Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dedreuil-Monet, Ghislain

  • Google
  • 1
  • 4
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension55citations

Places of action

Chart of shared publication
Alderson, Andrew
1 / 8 shared
Mcdonald, Samuel Alan
1 / 14 shared
Withers, Pj
1 / 103 shared
Yao, Yong Tao
1 / 1 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Alderson, Andrew
  • Mcdonald, Samuel Alan
  • Withers, Pj
  • Yao, Yong Tao
OrganizationsLocationPeople

article

In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension

  • Alderson, Andrew
  • Mcdonald, Samuel Alan
  • Withers, Pj
  • Dedreuil-Monet, Ghislain
  • Yao, Yong Tao
Abstract

X-ray microtomography has been used to study in situ the uniaxial tensile response of low-density polyurethane foam. Two variants have been examined, one before and one after treatment to generate auxetic behaviour. For both variants, microstructurally faithful finite element (FE) models have been constructed from the initial tomographs. For each variant a series of tomographs have been collected during progressive straining. Poisson's ratios of 0.30 (conventional, non-auxetic) and -0.22 (auxetic) have been measured for the two variants by digital image correlation (DIC) between successive images. By comparison, the FE models exhibited Poisson's ratio's of 0.5 and -0.3, respectively. Key micromechanical mechanisms responsible for the auxetic effect have been observed during straining, such as the straightening of bent ribs and rotation of nodes (joints), compared to changes in the angles between essentially straight struts for the non-auxetic variant. The microstructurally faithful FE models confirm the mechanisms observed in the experiments and enable characteristic rib and node behaviour to be followed in greater detail. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Topics
  • density
  • experiment
  • Poisson's ratio
  • tensile response