People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ayala, Paola
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Temperature dependence of the Raman spectrum of orthorhombic Bi2Se3
- 2022Highly Sensitive and Selective Formaldehyde Gas Sensors Based on Polyvinylpyrrolidone/Nitrogen-Doped Double-Walled Carbon Nanotubescitations
- 2021The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon filmscitations
- 2021Photothermal synthesis of confined carbynecitations
- 2019Roles of Precursor Conformation and Adatoms in Ullmann Coupling: An Inverted Porphyrin on Cu(111)citations
- 2019Towards controllable inner chirality in double-walled carbon nanotubescitations
- 2016Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubescitations
- 2013Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaicscitations
- 2011Nitrogen-Doped Single-Walled Carbon Nanotube Thin Films Exhibiting Anomalous Sheet Resistancescitations
- 2011Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growthcitations
- 2010Evidence for substitutional boron in doped single-walled carbon nanotubescitations
- 2009Carbon nanotube synthesis via ceramic catalystscitations
- 2008A one step approach to B-doped single-walled carbon nanotubescitations
Places of action
Organizations | Location | People |
---|
document
Carbon nanotube synthesis via ceramic catalysts
Abstract
The potential for ceramics as catalysts for carbon nanotubes (CNTs) formation exceeds that of metal catalysts in that ceramics can serve not only as a catalyst particle for CNT nucleation/growth as found with metal catalysts, but they can also serve as a template for the synthesis of carbon nanostructures. They can also be purified more readily. Here we present studies on the growth of CNTs from ceramics in laser pyrolysis and chemical vapor deposition (CVD) routes. We show CNT growth from both nanowires and ceramic particles. In addition, doping of the CNTs can also be achieved through the use of ceramic catalysts. Since ceramic materials are easily removed from the as-produced samples as compared to metal catalysts, they are attractive for further application, e.g., in carbon-based electronics.