Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adlkofer, Klaus

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Electrochemical stabilization of crystalline silicon with aromatic self‐assembled monolayers in aqueous electrolytes5citations

Places of action

Chart of shared publication
Tanaka, Motomu
1 / 3 shared
Purrucker, Oliver
1 / 2 shared
Tutus, Murat
1 / 2 shared
Eickhoff, Martin
1 / 2 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Tanaka, Motomu
  • Purrucker, Oliver
  • Tutus, Murat
  • Eickhoff, Martin
OrganizationsLocationPeople

article

Electrochemical stabilization of crystalline silicon with aromatic self‐assembled monolayers in aqueous electrolytes

  • Tanaka, Motomu
  • Adlkofer, Klaus
  • Purrucker, Oliver
  • Tutus, Murat
  • Eickhoff, Martin
Abstract

<jats:title>Abstract</jats:title><jats:p>We report stable chemical engineering of hydrogen‐terminated Si[111] surfaces in aqueous electrolytesby electrochemical grafting of aromatic monolayers. The topography and free energy of the engineered surface obtained from AFM and contact angle measurements confirmed homogeneous coating of the surface with a monolayer. Grafting of monolayers actually resulted in a clear suppression of the surface defect densities, demonstrated by photoluminescence lifetime. Changes in the surface chemical identitiesafter grafting and post‐treatments were followed by X‐ray photoelectron spectroscopy (XPS). The electrochemical stability in aqueous electrolytes was assessed by impedance spectroscopy, revealing an improved stabilization of the Si/electrolyte interface by the grafted monomolecular film. This protocol was further applied for another aromatic compound, where the impact of 4‐substituent functions could clearly be detected by photovoltage measurements. The chemical and electrochemical stability achieved here is promising for the successive deposition of biocompatible polymer films and lipid membranes. (© 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • compound
  • photoluminescence
  • polymer
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • Hydrogen
  • Silicon
  • defect