People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nabetani, Y.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Oxygen induced band-gap reduction in ZnOxSe1-x alloys
Abstract
The effect of alloying a small amount of ZnO with ZnSe on the electronic band structure has been studied. Optical transitions in MBE-grown ZnO <sub>x</sub>Se<sub>1-x</sub> epitaxial films (0 ≤ x ≤, 0.0135) were investigated using photoreflectance and photoluminescence spectroscopies. The fundamental band-gap energy of the alloys was found to decrease at a rate of about 0.1 eV per atomic percent of oxygen. The pressure dependence of the band gap was also found to be strongly affected by the O incorporation. Both effects can be quantitatively explained by an anticrossing interaction between the extended states of the conduction band of ZnSe and the highly localized oxygen states located at approximately 0.22 eV above the conduction band edge. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.