Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gramsch, Ernesto

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Estimation of Junction Temperature in Single 228 nm‐Band AlGaN Far‐Ultraviolet‐C Light‐Emitting Diode on c‐Sapphire Having 1.8 mW Power and 0.32% External Quantum Efficiency9citations

Places of action

Chart of shared publication
Iwaisako, Yasushi
1 / 1 shared
Yaguchi, Hiroyuki
1 / 1 shared
Fujimoto, Kohei
1 / 1 shared
Hirayama, Hideki
1 / 4 shared
Muta, Mitsuhiro
1 / 1 shared
Rojas, Javier Gonzalez
1 / 1 shared
Fredes, Pablo
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Iwaisako, Yasushi
  • Yaguchi, Hiroyuki
  • Fujimoto, Kohei
  • Hirayama, Hideki
  • Muta, Mitsuhiro
  • Rojas, Javier Gonzalez
  • Fredes, Pablo
OrganizationsLocationPeople

article

Estimation of Junction Temperature in Single 228 nm‐Band AlGaN Far‐Ultraviolet‐C Light‐Emitting Diode on c‐Sapphire Having 1.8 mW Power and 0.32% External Quantum Efficiency

  • Iwaisako, Yasushi
  • Gramsch, Ernesto
  • Yaguchi, Hiroyuki
  • Fujimoto, Kohei
  • Hirayama, Hideki
  • Muta, Mitsuhiro
  • Rojas, Javier Gonzalez
  • Fredes, Pablo
Abstract

<jats:p>The increasing resistance of methicillin‐resistant <jats:italic>Staphylococcusaureus</jats:italic> to antibiotics is a major challenge faced by mankind in thehistory of medical science and according to United Nations, 700‐000 patients worldwide die every year from an infection with multidrug‐resistant organisms (MROs). Aluminum gallium nitride‐based 228 nm Far‐ultraviolet‐C (Far‐UVC) lightsources can be safely used as a germicidal application in both manned as wellas in unmanned environments against these MROs. Previously, the 228 nm Far‐UVC light‐emitting diode (LED) with emission power of 1 mW was reported by ourgroup, however, the value of external quantum efficiency (EQE) was not reportedusing conventional thick Ni (20 nm)/Au (100 nm) p‐electrode. Herein, animproved Far‐UVC LED on c‐Sapphire is attempted using a special technique in SR4000 type of metal‐organic chemical vapor deposition reactor to control the Al composition in n‐AlGaN buffer and across the 2 inch‐wafer. As a result, the light emission power of 1.8 mW and EQE of 0.32% in 228 nm Far‐UVC LED aresuccessfully achieved using very thin p‐electrode (Ni/Au). However, arelatively high junction temperature of ≈100°C around thejunction of Far‐UVC LED is observed. Finally, some simple heat‐sink modules forheat dissipation of Far‐UVC LED panel with light power of 30 mW are implemented.</jats:p>

Topics
  • impedance spectroscopy
  • aluminium
  • nitride
  • chemical vapor deposition
  • Gallium