Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Raju, Goli Naga

  • Google
  • 1
  • 8
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023The Influence of Silver Ions on the Dielectric Dispersion Dipolar Relaxation Dynamics and Dielectric Breakdown Strength of Zinc Selenium Phosphate Glass System4citations

Places of action

Chart of shared publication
Venkatramaiah, Nutalapati
1 / 1 shared
Kumar, Vandana Ravi
1 / 1 shared
Ingram, Adam
1 / 5 shared
Nalluri, Veeraiah
1 / 3 shared
Reddy, Gade Naga Koti
1 / 1 shared
Sekhar, Ayyagari Venkata
1 / 1 shared
Kostrzewa, Marek
1 / 1 shared
Reddy, Annapureddy Siva Sesha
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Venkatramaiah, Nutalapati
  • Kumar, Vandana Ravi
  • Ingram, Adam
  • Nalluri, Veeraiah
  • Reddy, Gade Naga Koti
  • Sekhar, Ayyagari Venkata
  • Kostrzewa, Marek
  • Reddy, Annapureddy Siva Sesha
OrganizationsLocationPeople

article

The Influence of Silver Ions on the Dielectric Dispersion Dipolar Relaxation Dynamics and Dielectric Breakdown Strength of Zinc Selenium Phosphate Glass System

  • Raju, Goli Naga
  • Venkatramaiah, Nutalapati
  • Kumar, Vandana Ravi
  • Ingram, Adam
  • Nalluri, Veeraiah
  • Reddy, Gade Naga Koti
  • Sekhar, Ayyagari Venkata
  • Kostrzewa, Marek
  • Reddy, Annapureddy Siva Sesha
Abstract

<jats:p>Herein, a study on the dielectric properties of ZnO–P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>–SeO<jats:sub>2</jats:sub> glass ceramics containing varied contents of Ag<jats:sub>2</jats:sub>O is presented. Structural analysis of the samples by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectra, and optical absorption techniques indicated that the glasses are embedded with Ag<jats:sub>3</jats:sub>PO<jats:sub>4</jats:sub>, Ag<jats:sub>2</jats:sub>SeO<jats:sub>3</jats:sub>, and Zn<jats:sub>3</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub> anisotropic crystal phases along with Ag<jats:sup>+</jats:sup> ions and Ag<jats:sup>0</jats:sup> particles. Dielectric properties, ac conductivity <jats:italic>(σ</jats:italic><jats:sub>ac</jats:sub>), and dielectric breakdown strength (DBS) are investigated as functions of Ag<jats:sub>2</jats:sub>O concentration. The results show the maximal concentration of Ag<jats:sup>+</jats:sup> ions and Ag<jats:sup>0</jats:sup> metallic particles in the sample containing 0.6 mol% of Ag<jats:sub>2</jats:sub>O. Dielectric parameters and <jats:italic>(σ</jats:italic><jats:sub>ac</jats:sub>) increase with increasing Ag<jats:sub>2</jats:sub>O up to 0.6 mol%, while the DBS and electrical impedance decrease. The observed dipolar effects are quantitatively analyzed and possible dipoles are identified. Ionic contribution is predominant up to 0.6 mol% of Ag<jats:sub>2</jats:sub>O, beyond which the polaronic tunneling phenomenon prevails. These findings indicate that 0.6 mol% of Ag<jats:sub>2</jats:sub>O is the optimal concentration for using these glass ceramics as solid electrolytes in ionic batteries. Moreover, glass ceramics containing Ag<jats:sub>2</jats:sub>O beyond 0.6 mol% have exhibited larger polaronic conductivity, hence such glasses can be considered suitable candidates for electrodes in ionic batteries.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • silver
  • phase
  • zinc
  • glass
  • glass
  • strength
  • anisotropic
  • transmission electron microscopy
  • differential scanning calorimetry
  • ceramic
  • dielectric dispersion
  • dielectric breakdown strength