Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wenckstern, Holger Von

  • Google
  • 4
  • 31
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Realization of Conductive n‐Type Doped <i>α</i>‐Ga<sub>2</sub>O<sub>3</sub> on <i>m</i>‐Plane Sapphire Grown by a Two‐Step Pulsed Laser Deposition Process16citations
  • 2023Ultrawide bandgap willemite-type Zn<sub>2</sub>GeO<sub>4</sub> epitaxial thin films8citations
  • 2022Band Alignment of Al<sub>2</sub>O<sub>3</sub> on α-(Al<sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub>5citations
  • 2019Native Point Defect Measurement and Manipulation in ZnO Nanostructures19citations

Places of action

Chart of shared publication
Splith, Daniel
1 / 5 shared
Grundmann, Marius
4 / 32 shared
Petersen, Clemens
1 / 1 shared
Schultz, Thorsten
1 / 7 shared
Koch, Norbert
1 / 40 shared
Kneiß, Max
1 / 3 shared
Vogt, Sofie
1 / 2 shared
Lange, Stefan
1 / 7 shared
Lorenz, Michael
1 / 13 shared
Yu, Jingjing
1 / 2 shared
Hagendorf, Christian
1 / 11 shared
Trefflich, Lukas
1 / 1 shared
Höche, Thomas
1 / 5 shared
Luo, Sijun
1 / 3 shared
Hildebrandt, Ron
1 / 1 shared
Selle, Susanne
1 / 12 shared
Sturm, Chris
1 / 3 shared
Krüger, Evgeny
1 / 2 shared
Haque, Aman
1 / 6 shared
Hassa, Anna
1 / 4 shared
Xia, Xinyi
1 / 2 shared
Fares, Chaker
1 / 1 shared
Pearton, Stephen
1 / 5 shared
Al-Mamun, Nahid Sultan
1 / 3 shared
Ren, Fan
1 / 5 shared
Foster, Geoffrey
1 / 3 shared
Look, David
1 / 3 shared
Jarjour, Alexander
1 / 2 shared
Cox, Jonathan
1 / 2 shared
Gao, Hantian
1 / 2 shared
Ruane, William
1 / 2 shared
Chart of publication period
2023
2022
2019

Co-Authors (by relevance)

  • Splith, Daniel
  • Grundmann, Marius
  • Petersen, Clemens
  • Schultz, Thorsten
  • Koch, Norbert
  • Kneiß, Max
  • Vogt, Sofie
  • Lange, Stefan
  • Lorenz, Michael
  • Yu, Jingjing
  • Hagendorf, Christian
  • Trefflich, Lukas
  • Höche, Thomas
  • Luo, Sijun
  • Hildebrandt, Ron
  • Selle, Susanne
  • Sturm, Chris
  • Krüger, Evgeny
  • Haque, Aman
  • Hassa, Anna
  • Xia, Xinyi
  • Fares, Chaker
  • Pearton, Stephen
  • Al-Mamun, Nahid Sultan
  • Ren, Fan
  • Foster, Geoffrey
  • Look, David
  • Jarjour, Alexander
  • Cox, Jonathan
  • Gao, Hantian
  • Ruane, William
OrganizationsLocationPeople

article

Realization of Conductive n‐Type Doped <i>α</i>‐Ga<sub>2</sub>O<sub>3</sub> on <i>m</i>‐Plane Sapphire Grown by a Two‐Step Pulsed Laser Deposition Process

  • Splith, Daniel
  • Grundmann, Marius
  • Petersen, Clemens
  • Schultz, Thorsten
  • Koch, Norbert
  • Kneiß, Max
  • Vogt, Sofie
  • Wenckstern, Holger Von
Abstract

<jats:sec><jats:label /><jats:p>Structural and electrical properties of undoped and doped <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films grown by pulsed laser deposition on <jats:italic>m</jats:italic>‐plane sapphire in a two‐step process are presented. A buffer layer of undoped <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is introduced below the electrically active thin film to improve the crystal quality and enable the stabilization of the <jats:italic>α</jats:italic>‐phase at lower substrate temperatures for sufficient dopant incorporation. Donor doping of the active layers with tin, germanium, and silicon, respectively, is realized below a critical substrate temperature of 600 °C. Depth‐resolved X‐ray photoelectron spectroscopy measurements on tin‐doped samples reveal a lower amount of tin in the bulk thin film compared to the surface and a lower tin incorporation for higher substrate temperatures, indicating desorption or float‐up processes that determine the dopant incorporation. Electron mobilities as high as 17 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> (at ) and 37 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> (at ) are achieved for tin‐ and germanium doping, respectively. Further, a narrow window of suitable annealing temperature from 680 to 700 K for obtaining ohmic Ti/Al/Au layer stacks is identified. For higher annealing temperatures, a deterioration of the electrical properties of the thin films is observed suggesting the need for developing low temperature contacting procedures for <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐based devices.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • thin film
  • Silicon
  • annealing
  • size-exclusion chromatography
  • tin
  • pulsed laser deposition
  • photoelectron spectroscopy
  • Germanium