People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wenckstern, Holger Von
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Realization of Conductive n‐Type Doped <i>α</i>‐Ga<sub>2</sub>O<sub>3</sub> on <i>m</i>‐Plane Sapphire Grown by a Two‐Step Pulsed Laser Deposition Processcitations
- 2023Ultrawide bandgap willemite-type Zn<sub>2</sub>GeO<sub>4</sub> epitaxial thin filmscitations
- 2022Band Alignment of Al<sub>2</sub>O<sub>3</sub> on α-(Al<sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub>citations
- 2019Native Point Defect Measurement and Manipulation in ZnO Nanostructurescitations
Places of action
Organizations | Location | People |
---|
article
Realization of Conductive n‐Type Doped <i>α</i>‐Ga<sub>2</sub>O<sub>3</sub> on <i>m</i>‐Plane Sapphire Grown by a Two‐Step Pulsed Laser Deposition Process
Abstract
<jats:sec><jats:label /><jats:p>Structural and electrical properties of undoped and doped <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films grown by pulsed laser deposition on <jats:italic>m</jats:italic>‐plane sapphire in a two‐step process are presented. A buffer layer of undoped <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is introduced below the electrically active thin film to improve the crystal quality and enable the stabilization of the <jats:italic>α</jats:italic>‐phase at lower substrate temperatures for sufficient dopant incorporation. Donor doping of the active layers with tin, germanium, and silicon, respectively, is realized below a critical substrate temperature of 600 °C. Depth‐resolved X‐ray photoelectron spectroscopy measurements on tin‐doped samples reveal a lower amount of tin in the bulk thin film compared to the surface and a lower tin incorporation for higher substrate temperatures, indicating desorption or float‐up processes that determine the dopant incorporation. Electron mobilities as high as 17 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> (at ) and 37 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> (at ) are achieved for tin‐ and germanium doping, respectively. Further, a narrow window of suitable annealing temperature from 680 to 700 K for obtaining ohmic Ti/Al/Au layer stacks is identified. For higher annealing temperatures, a deterioration of the electrical properties of the thin films is observed suggesting the need for developing low temperature contacting procedures for <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐based devices.</jats:p></jats:sec>