Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aliyu, Nafiu S.

  • Google
  • 1
  • 9
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023High‐Temperature Laser‐Assisted Synthesis of Boron Nanorods, Nanowires, and Bamboo‐Like Nanotubes4citations

Places of action

Chart of shared publication
Manikandan, Elayaperumal
1 / 1 shared
Maaza, Malik
1 / 11 shared
Pillay, Michael Nivendran
1 / 2 shared
Chen, Chii-Dong
1 / 1 shared
Christopher, Phillip S.
1 / 1 shared
Motaung, David E.
1 / 1 shared
Adebisi, Mufutau Amobi
1 / 1 shared
Ronning, Carsten
1 / 14 shared
Moodley, Mathew Kisten
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Manikandan, Elayaperumal
  • Maaza, Malik
  • Pillay, Michael Nivendran
  • Chen, Chii-Dong
  • Christopher, Phillip S.
  • Motaung, David E.
  • Adebisi, Mufutau Amobi
  • Ronning, Carsten
  • Moodley, Mathew Kisten
OrganizationsLocationPeople

article

High‐Temperature Laser‐Assisted Synthesis of Boron Nanorods, Nanowires, and Bamboo‐Like Nanotubes

  • Manikandan, Elayaperumal
  • Maaza, Malik
  • Pillay, Michael Nivendran
  • Chen, Chii-Dong
  • Aliyu, Nafiu S.
  • Christopher, Phillip S.
  • Motaung, David E.
  • Adebisi, Mufutau Amobi
  • Ronning, Carsten
  • Moodley, Mathew Kisten
Abstract

<jats:sec><jats:label /><jats:p>A double‐pulsed laser ablation (DPLA) method has been used to synthesize crystalline boron nanorods (BNRs), boron nanowires (BNWs), and bamboo‐like boron nanotubes (BBNTs) from bulk boron (BKB). A q‐switched Nd: YAG laser operating at the first and second harmonic wavelengths with 1064 and 532 nm is used to ablate a solid composite boron target doped with 1% Ni and 1% Co in a tube furnace in flowing argon gas. Boron nanostructures in the form of BNRs, BNWs, and BBNTs are condensed from the hot laser‐induced plasma plume at furnace temperatures of 800, 900, and 1000 °C. The morphology and the chemical and optical nature of the nanostructures are identified from X‐ray diffraction, electron microscopy, energy‐dispersive X‐ray spectroscopy, Raman, UV–vis, and photoluminescence (PL) spectroscopies. The results confirm the crystallinity and phase purity of the boron‐nanomaterials and that they are preferentially grown in the c‐axis direction of α‐boron. The as‐synthesized BNRs, BNWs, and BBNTs are observed to have lengths of 0.2–1.5 μm and widths between 10 and 100 nm, and show respective PL resonance emission peaks at 330, 331, and 333 nm, and the electrical conductivities of 312, 313, and 324 S cm<jats:sup>−1</jats:sup> at room temperature which are higher than the electrical conductivity of BKB.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • photoluminescence
  • phase
  • nanotube
  • composite
  • Boron
  • electron microscopy
  • size-exclusion chromatography
  • electrical conductivity
  • crystallinity
  • laser ablation