Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hwang, Imgon

  • Google
  • 7
  • 30
  • 230

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance6citations
  • 2023Fluorine Aided Stabilization of Pt Single Atoms on TiO2 Nanosheets and Strongly Enhanced Photocatalytic H2 Evolution64citations
  • 2022A facile “dark”-deposition approach for Pt single‐atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation34citations
  • 2022Inhibition of H2 and O2 Recombination: The Key to a Most Efficient Single‐Atom Co‐Catalyst for Photocatalytic H2 Evolution from Plain Water41citations
  • 2021Thermal Ramping Rate during Annealing of TiO2 Nanotubes Greatly Affects Performance of Photoanodes16citations
  • 2021Thermal Ramping Rate during Annealing of TiO<sub>2</sub> Nanotubes Greatly Affects Performance of Photoanodes16citations
  • 2021As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H2 evolution53citations

Places of action

Chart of shared publication
Manojlović, Dragan
1 / 11 shared
Lačnjevac, Uroš
1 / 4 shared
Đurđić, Slađana
1 / 2 shared
Vasilić, Rastko
1 / 6 shared
Schmuki, Patrik
7 / 29 shared
Dobrota, Ana S.
2 / 5 shared
Krstajić Pajić, Mila N.
1 / 6 shared
Mazare, Anca
4 / 6 shared
Skorodumova, Natalia V.
2 / 5 shared
Pašti, Igor A.
2 / 10 shared
Sarma, Bidyut Bikash
1 / 2 shared
Badura, Zdenek
1 / 2 shared
Wu, Zhenni
1 / 2 shared
Pu, Fu-Fei
1 / 1 shared
Wang, Li-Ying
1 / 1 shared
Osuagwu, Benedict
2 / 3 shared
Will, Johannes
4 / 48 shared
Zoppellaro, Giorgio
2 / 7 shared
Wu, Si-Ming
1 / 1 shared
Spiecker, Erdmann
4 / 70 shared
Cha, Gihoon
2 / 2 shared
Yokosawa, Tadahiro
3 / 18 shared
Badura, Zdeněk
2 / 2 shared
Tesler, Alexander B.
1 / 3 shared
Denisov, Nikita
3 / 8 shared
Raza, Waseem
2 / 3 shared
Kment, Štěpán
1 / 6 shared
Mohajernia, Shiva
1 / 5 shared
Kim, Hyesung
1 / 2 shared
Hejazi, Seyedsina
1 / 5 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Manojlović, Dragan
  • Lačnjevac, Uroš
  • Đurđić, Slađana
  • Vasilić, Rastko
  • Schmuki, Patrik
  • Dobrota, Ana S.
  • Krstajić Pajić, Mila N.
  • Mazare, Anca
  • Skorodumova, Natalia V.
  • Pašti, Igor A.
  • Sarma, Bidyut Bikash
  • Badura, Zdenek
  • Wu, Zhenni
  • Pu, Fu-Fei
  • Wang, Li-Ying
  • Osuagwu, Benedict
  • Will, Johannes
  • Zoppellaro, Giorgio
  • Wu, Si-Ming
  • Spiecker, Erdmann
  • Cha, Gihoon
  • Yokosawa, Tadahiro
  • Badura, Zdeněk
  • Tesler, Alexander B.
  • Denisov, Nikita
  • Raza, Waseem
  • Kment, Štěpán
  • Mohajernia, Shiva
  • Kim, Hyesung
  • Hejazi, Seyedsina
OrganizationsLocationPeople

article

Thermal Ramping Rate during Annealing of TiO<sub>2</sub> Nanotubes Greatly Affects Performance of Photoanodes

  • Hwang, Imgon
  • Schmuki, Patrik
  • Raza, Waseem
  • Denisov, Nikita
Abstract

<jats:sec><jats:label /><jats:p>Herein, highly ordered TiO<jats:sub>2</jats:sub> nanotube (NT) arrays on a Ti substrate is synthesized in a fluoride‐containing electrolyte, using the electrochemical anodization method, which yields amorphous oxide tubes. The effects of different thermal annealing profiles for the crystallization of the amorphous TiO<jats:sub>2</jats:sub> NTs are studied. It is found that the temperature ramping rate has a significant impact on the magnitude of the resulting photocurrents (incident photon‐to‐current conversion efficiency [IPCE]) from the tubes. No appreciable changes are observed in the crystal structure and morphology of the TiO<jats:sub>2</jats:sub> NTs for different annealing profiles (to a constant temperature of 450 °C). The electrochemical properties of the annealed TiO<jats:sub>2</jats:sub> NTs are investigated using intensity‐modulated photocurrent spectroscopy (IMPS), open‐circuit potential decay, and Mott–Schottky analysis. The results clearly show that the annealing ramping rate of 1 °C s<jats:sup>−1</jats:sup> leads to the highest IPCE performance. This beneficial effect can be ascribed to a most effective charge separation and electron transport (indicating the least amount of trapping states in the tubes). Therefore, the results suggest that controlling the annealing ramping rate is not only a key factor affecting the defect structure but also a powerful tool to tailor the physical properties, and photocurrent activity of TiO<jats:sub>2</jats:sub> NTs.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • amorphous
  • nanotube
  • defect
  • annealing
  • size-exclusion chromatography
  • crystallization
  • defect structure