Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morozov, Konstantin M.

  • Google
  • 1
  • 10
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Emission Properties of GaN Planar Hexagonal Microcavities8citations

Places of action

Chart of shared publication
Kaliteevski, Mikhail A.
1 / 2 shared
Rodin, Sergey N.
1 / 2 shared
Girshova, Elizaveta I.
1 / 1 shared
Ivanov, Konstantin A.
1 / 1 shared
Hemmingsson, Carl
1 / 5 shared
Levitskii, Iaroslav V.
1 / 2 shared
Belonovskii, Alexei V.
1 / 1 shared
Evtikhiev, Vadim P.
1 / 2 shared
Mitrofanov, Maxim I.
1 / 2 shared
Pozina, Galia
1 / 16 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Kaliteevski, Mikhail A.
  • Rodin, Sergey N.
  • Girshova, Elizaveta I.
  • Ivanov, Konstantin A.
  • Hemmingsson, Carl
  • Levitskii, Iaroslav V.
  • Belonovskii, Alexei V.
  • Evtikhiev, Vadim P.
  • Mitrofanov, Maxim I.
  • Pozina, Galia
OrganizationsLocationPeople

article

Emission Properties of GaN Planar Hexagonal Microcavities

  • Morozov, Konstantin M.
  • Kaliteevski, Mikhail A.
  • Rodin, Sergey N.
  • Girshova, Elizaveta I.
  • Ivanov, Konstantin A.
  • Hemmingsson, Carl
  • Levitskii, Iaroslav V.
  • Belonovskii, Alexei V.
  • Evtikhiev, Vadim P.
  • Mitrofanov, Maxim I.
  • Pozina, Galia
Abstract

<jats:sec><jats:label /><jats:p>Fabrication of microcavities based on III‐nitrides is challenging due to difficulties with the coherent growth of heterostructures having a large number of periods, at the same time keeping a good precision in terms of thickness and composition of the alloy. A planar design for GaN microresonators supporting whispering gallery modes is suggested. GaN hexagonal microstructures are fabricated by selective‐area metalorganic vapor phase epitaxy using focused ion beam for mask patterning. Low‐temperature cathodoluminescence spectra measured with a high spatial resolution demonstrate two dominant emission lines in the near bandgap region. These lines merge at room temperature into a broad emission band peaking at ≈3.3 eV, which is shifted toward lower energies compared with the reference excitonic spectrum measured for the GaN layer. A numerical analysis of exciton–polariton modes shows that some strongly localized cavity modes can have high Purcell coefficients and can strongly interact with the GaN exciton.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • nitride
  • focused ion beam
  • size-exclusion chromatography