Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Chenxu

  • Google
  • 1
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Nanocrystallites via Direct Melt Spinning of Fe<sub>77</sub>Ni<sub>5.5</sub>Co<sub>5.5</sub>Zr<sub>7</sub>B<sub>4</sub>Cu for Enhanced Magnetic Softness5citations

Places of action

Chart of shared publication
Welton, Aaron
1 / 1 shared
Song, Jie
1 / 4 shared
Ewing, Rodney C.
1 / 13 shared
Solomon, Virgil
1 / 1 shared
Budko, Sergey L.
1 / 4 shared
Boolchand, Punit
1 / 4 shared
Heben, Michael J.
1 / 2 shared
Martone, Anthony
1 / 1 shared
Thomas, Som V.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Welton, Aaron
  • Song, Jie
  • Ewing, Rodney C.
  • Solomon, Virgil
  • Budko, Sergey L.
  • Boolchand, Punit
  • Heben, Michael J.
  • Martone, Anthony
  • Thomas, Som V.
OrganizationsLocationPeople

article

Nanocrystallites via Direct Melt Spinning of Fe<sub>77</sub>Ni<sub>5.5</sub>Co<sub>5.5</sub>Zr<sub>7</sub>B<sub>4</sub>Cu for Enhanced Magnetic Softness

  • Welton, Aaron
  • Song, Jie
  • Ewing, Rodney C.
  • Solomon, Virgil
  • Budko, Sergey L.
  • Boolchand, Punit
  • Wang, Chenxu
  • Heben, Michael J.
  • Martone, Anthony
  • Thomas, Som V.
Abstract

<jats:sec><jats:label /><jats:p>In all previous studies of soft magnetic alloys, magnetic softness is obtained through forming a completely amorphous state via rapid solidification, such as by melt spinning at a high cooling rate followed by annealing, typically at 600 °C, to develop a magnetically isotropic nanostructure. Fine powdering of the annealed alloy via ball milling is then required for manufacturing, net shaping, and 3D printing. However, the soft magnetic properties are susceptible to the subsequent processing conditions, characterized by significantly increased coercivity. Herein, nanoscale crystallites are obtained directly from the melt‐spun Fe<jats:sub>77</jats:sub>Ni<jats:sub>5.5</jats:sub>Co<jats:sub>5.5</jats:sub>Zr<jats:sub>7</jats:sub>B<jats:sub>4</jats:sub>Cu ribbon (i.e., not through annealing of a completely amorphous ribbon) that exhibits structural stability during the annealing and ball‐milling processes. The melt‐spun ribbon annealed at high temperatures (700 °C) remains magnetically soft with <jats:italic>H</jats:italic><jats:sub>c</jats:sub> of ≈0 Oe, which is a key property for high‐temperature applications. Ball milling of the annealed melt‐spun samples results in fine powders with low <jats:italic>H</jats:italic><jats:sub>c</jats:sub> values over a wide temperature range up to 427 °C. It is shown that the rapidly solidified crystalline ribbon provides an ideal precursor for the manufacture of high‐temperature soft magnetic materials. This new approach provides a straightforward method of making soft magnetic alloy powders.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • amorphous
  • melt
  • milling
  • annealing
  • isotropic
  • ball milling
  • ball milling
  • size-exclusion chromatography
  • melt spinning
  • coercivity
  • rapid solidification