People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stern, Raivo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Reusable magnetic mixture of CuFe 2 O 4 -Fe 2 O 3 and TiO 2 for photocatalytic degradation of pesticides in watercitations
- 2023Interplay between Fe(II) and Fe(III) and Its Impact on Thermoelectric Properties of Iron-Substituted Colusites Cu26−xFexV2Sn6S32citations
- 2022Memory Effects in Nanolaminates of Hafnium and Iron Oxide Films Structured by Atomic Layer Depositioncitations
- 2020Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl2(TMPDA) and Tert‐Butylhydrazine as Precursorscitations
- 2020Atomic Layer Deposition of Intermetallic Co3Sn2 and Ni3Sn2 Thin Filmscitations
- 2020Magnetic properties and resistive switching in mixture films and nanolaminates consisting of iron and silicon oxides grown by atomic layer depositioncitations
- 2020Atomic Layer Deposition and Performance of ZrO2-Al2O3 Thin Filmscitations
- 2020Behavior of nanocomposite consisting of manganese ferrite particles and atomic layer deposited bismuth oxide chloride filmcitations
- 2019Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl2(TMPDA) and Tert‐Butylhydrazine as Precursorscitations
- 2019Atomic Layer Deposition of Intermetallic Co3Sn2 and Ni3Sn2 Thin Filmscitations
- 2019Magnetic and Electrical Performance of Atomic Layer Deposited Iron Erbium Oxide Thin Filmscitations
- 2018Properties of Atomic Layer Deposited Nanolaminates of Zirconium and Cobalt Oxidescitations
- 2018Atomic Layer Deposition of Zirconium Dioxide from Zirconium Tetraiodide and Ozonecitations
- 2018Atomic Layer Deposition and Performance of ZrO2-Al2O3 Thin Filmscitations
- 2018Atomic Layer Deposition and Properties of HfO2-Al2O3 Nanolaminatescitations
- 2018Atomic layer deposition and properties of ZrO2/Fe2O3 thin filmscitations
- 2016Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layerscitations
- 2014Holmium and titanium oxide nanolaminates by atomic layer depositioncitations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl2(TMPDA) and Tert‐Butylhydrazine as Precursors
Abstract
This article describes the atomic layer deposition (ALD) of nickel nitride and nickel thin films using a diamine adduct of Ni(II) chloride, NiCl2(TMPDA) (TMPDA=N,N,N',N',-tetramethy1-1,3-propanediamine), as the metal precursor. Owing to the high reducing power of tert-butylhydrazine (TBH), the films are grown at low temperatures of 190-250 degrees C. This is one of the few low temperature ALD processes that can be used to grow Ni3N and Ni metal on both insulating and conductive substrates. The films are characterized in terms of crystallinity, morphology, composition, resistivity, and coercivity. Xray diffraction shows reflections compatible with either hexagonal Ni or Ni3N. Composition analyses suggest that the films are close to stoichiometric Ni3N. Despite the nitride component, the films exhibit low resistivity values and at the lowest, a resistivity of 37 RD cm is achieved. The result is lower than what is typically observed for NixN films and not much higher than the best results concerning ALD Ni metal. The nitrogen content of the films is lowered down to 1.2 at% by postdeposition reduction at 150 degrees C in 10% forming gas. After the reduction, the nonmagnetic nitride films are converted to ferromagnetic Ni metal.