Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kleider, Jeanpaul

  • Google
  • 1
  • 7
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Conductivity and Surface Passivation Properties of Boron‐Doped Poly‐Silicon Passivated Contacts for c‐Si Solar Cells17citations

Places of action

Chart of shared publication
Dubois, Sébastien
1 / 11 shared
Cabal, Raphaël
1 / 7 shared
Morisset, Audrey
1 / 10 shared
Alvarez, José
1 / 17 shared
Marchat, Clément
1 / 3 shared
Gueunierfarret, Marieestelle
1 / 1 shared
Grange, Bernadette
1 / 5 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Dubois, Sébastien
  • Cabal, Raphaël
  • Morisset, Audrey
  • Alvarez, José
  • Marchat, Clément
  • Gueunierfarret, Marieestelle
  • Grange, Bernadette
OrganizationsLocationPeople

article

Conductivity and Surface Passivation Properties of Boron‐Doped Poly‐Silicon Passivated Contacts for c‐Si Solar Cells

  • Kleider, Jeanpaul
  • Dubois, Sébastien
  • Cabal, Raphaël
  • Morisset, Audrey
  • Alvarez, José
  • Marchat, Clément
  • Gueunierfarret, Marieestelle
  • Grange, Bernadette
Abstract

<jats:sec><jats:label /><jats:p>Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiO<jats:sub>x</jats:sub>) film are currently of growing interest to reduce recombination at the interface between the metal electrode and the c‐Si substrate. This study focuses on the development of boron‐doped poly‐Si/SiO<jats:sub>x</jats:sub> structure to obtain a hole selective passivated contact with a reduced recombination current density and a high photo‐voltage potential. The poly‐Si layer is obtained by depositing a hydrogen‐rich amorphous silicon layer by plasma enhanced chemical vapor deposition (PECVD) exposed then to an annealing step. Using the PECVD route enables to single side deposit the poly Si layer, however, a blistering of the layer appears due to its high hydrogen content, which leads to the degradation of the poly‐Si layer after annealing. In this study, the deposition temperature and gas flow ratio used during PECVD step are optimized to obtain blister‐free poly‐Si layer. The stability of the surface passivation properties over time is shown to depend on the blister density. The surface passivation properties are further improved thanks to a post process hydrogenation step. As a result, a mean implied photo‐voltage value of 714 mV is obtained.</jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • Hydrogen
  • Silicon
  • Boron
  • annealing
  • current density
  • size-exclusion chromatography
  • chemical vapor deposition