Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hoppe, Mathias

  • Google
  • 4
  • 23
  • 133

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Formation of micro-mechanical interlocking sites by nanoscale sculpturing for composites or hybrid materials with stainless steel5citations
  • 2018Ultra-thin TiO 2 films by atomic layer deposition and surface functionalization with Au nanodots for sensing applications33citations
  • 2018ZnAl2O4-Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applications30citations
  • 2016Complex shaped ZnO nano- and microstructure based polymer composites65citations

Places of action

Chart of shared publication
Kalu, Chima Obobi
1 / 2 shared
Hoelken, Iris
1 / 1 shared
Adelung, Rainer
4 / 120 shared
Carstensen, Juergen
1 / 1 shared
Gerngross, Mark-Daniel
1 / 2 shared
Baytekin-Gerngross, Melike
1 / 2 shared
Ababii, Nicolai
1 / 10 shared
Reimer, Tim
1 / 5 shared
Lupan, Oleg
2 / 31 shared
Polonskyi, Oleksandr
1 / 16 shared
Shree, Sindu
1 / 6 shared
Faupel, Franz
1 / 46 shared
Sontea, Victor
1 / 3 shared
Chemnitz, Steffen
1 / 7 shared
Postica, Vasile
2 / 18 shared
Wolff, Niklas
1 / 15 shared
Duppel, Viola
1 / 9 shared
Kienle, Lorenz
1 / 52 shared
Tiginyanu, Ion
1 / 16 shared
Mishra, Yogendra K.
1 / 4 shared
Hölken, Iris
1 / 7 shared
Gorb, Stanislav N.
1 / 10 shared
Baum, Martina J.
1 / 5 shared
Chart of publication period
2020
2018
2016

Co-Authors (by relevance)

  • Kalu, Chima Obobi
  • Hoelken, Iris
  • Adelung, Rainer
  • Carstensen, Juergen
  • Gerngross, Mark-Daniel
  • Baytekin-Gerngross, Melike
  • Ababii, Nicolai
  • Reimer, Tim
  • Lupan, Oleg
  • Polonskyi, Oleksandr
  • Shree, Sindu
  • Faupel, Franz
  • Sontea, Victor
  • Chemnitz, Steffen
  • Postica, Vasile
  • Wolff, Niklas
  • Duppel, Viola
  • Kienle, Lorenz
  • Tiginyanu, Ion
  • Mishra, Yogendra K.
  • Hölken, Iris
  • Gorb, Stanislav N.
  • Baum, Martina J.
OrganizationsLocationPeople

article

ZnAl2O4-Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applications

  • Hoppe, Mathias
  • Lupan, Oleg
  • Wolff, Niklas
  • Duppel, Viola
  • Adelung, Rainer
  • Kienle, Lorenz
  • Postica, Vasile
  • Tiginyanu, Ion
Abstract

<p>In this work, a simple method of ZnAl<sub>2</sub>O<sub>4</sub>-functionalization of ZnO microstructures is presented. The different characterization methods (structural, chemical, and micro-Raman) demonstrated the presence of only ZnO and ZnAl<sub>2</sub>O<sub>4</sub> crystalline phases. ZnAl<sub>2</sub>O<sub>4</sub> nano-crystallites grow on the surfaces of ZnO 3D microstructures having diameters of 50–100 nm and with high density. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) results clearly show ZnAl<sub>2</sub>O<sub>4</sub> crystallites functionalizing zinc oxide tetrapod arms. The individual structures (microwires (MWs) and three-dimensional (3D) tetrapods (Ts)) are integrated into functional devices, suitable for gas sensing applications. All devices show excellent hydrogen gas selectivity at relatively low operating temperature in the range of 25–100 °C. The highest gas sensing performances are obtained based on individual ZnAl<sub>2</sub>O<sub>4</sub>-functionalized ZnO tetrapods (ZnAl<sub>2</sub>O<sub>4</sub>/ZnO-T, with an arm diameter (D) of ≈400 nm) and a response of ≈2 at 25 °C to 100 ppm of hydrogen gas (H­<sub>2</sub>), while a ZnAl<sub>2</sub>O<sub>4</sub>/ZnO-MW (D ≈ 400 nm) shows only a response of ≈1.1. The Al-doped ZnO MW (D ≈ 400 nm) without ZnAl<sub>2</sub>O<sub>4</sub> elaborated in another work, chosen only for comparison reason, shows no response up to 800 ppm H<sub>2</sub> gas concentration. A gas sensing mechanism is proposed for a single ZnAl<sub>2</sub>O<sub>4</sub>/ZnO-T microstructure based sensor. The obtained results on ZnAl<sub>2</sub>O<sub>4</sub>/ZnO-T-based devices is superior to many reported performances of other individual metal oxide nanostructures with much lower diameter, showing promising results for room temperature H<sub>2</sub> gas sensing applications.</p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • surface
  • crystalline phase
  • zinc
  • Hydrogen
  • transmission electron microscopy
  • functionalization