Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iucolano, Ferdinando

  • Google
  • 1
  • 8
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Barrier Inhomogeneity of Ni Schottky Contacts to Bulk GaN19citations

Places of action

Chart of shared publication
Giannazzo, Filippo
1 / 14 shared
Greco, Giuseppe
1 / 6 shared
Pecz, Bela
1 / 8 shared
Fiorenza, Patrick
1 / 6 shared
Cora, Ildiko
1 / 5 shared
Alberti, Alessandra
1 / 6 shared
Franco, Salvatore Di
1 / 2 shared
Roccaforte, Fabrizio
1 / 7 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Giannazzo, Filippo
  • Greco, Giuseppe
  • Pecz, Bela
  • Fiorenza, Patrick
  • Cora, Ildiko
  • Alberti, Alessandra
  • Franco, Salvatore Di
  • Roccaforte, Fabrizio
OrganizationsLocationPeople

article

Barrier Inhomogeneity of Ni Schottky Contacts to Bulk GaN

  • Iucolano, Ferdinando
  • Giannazzo, Filippo
  • Greco, Giuseppe
  • Pecz, Bela
  • Fiorenza, Patrick
  • Cora, Ildiko
  • Alberti, Alessandra
  • Franco, Salvatore Di
  • Roccaforte, Fabrizio
Abstract

<jats:sec><jats:label /><jats:p>Gallium nitride (GaN) is a promising candidate for high‐power and high‐frequency devices. To date, the lack of large area bulk GaN materials of reasonable cost and quality has limited the technology almost completely to lateral devices. However, vertical structures are attractive to obtain a higher current density and a reduced device size. In this work, the electrical behavior of a Ni/Au Schottky barrier on bulk GaN material is studied, using vertical Schottky diodes. The forward current–voltage characteristics of the diodes reveal a temperature dependence of both the ideality factor (<jats:italic>n</jats:italic>) and of the Schottky barrier height (<jats:italic>Φ</jats:italic><jats:sub>B</jats:sub>). The ideal value of the barrier of 1.72 eV extrapolated at <jats:italic>n</jats:italic> = 1 is in agreement with the results obtained by capacitance–voltage measurements. A nanoscale electrical analysis performed by conductive atomic force microscopy (C‐AFM) allow to visualize the barrier height inhomogeneity and to correlate the current distribution to the surface morphology of the material. The barrier inhomogeneity explains the temperature behavior of ideality factor and barrier height determined by the macroscopic diodes. Preliminary structural analyses carried out by transmission electron microscopy (TEM) of the metal semiconductor interface revealed a typically flat Au/Ni bilayer structure, the Ni layer being epitaxial to GaN, with some mosaicity.</jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • morphology
  • surface
  • atomic force microscopy
  • semiconductor
  • nitride
  • transmission electron microscopy
  • current density
  • size-exclusion chromatography
  • Gallium