People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mishra, Neeraj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Decoupled High‐Mobility Graphene on Cu(111)/Sapphire via Chemical Vapor Depositioncitations
- 2023Industrial Graphene Coating of Low-Voltage Copper Wires for Power Distributioncitations
- 2022Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocompositecitations
- 2022Industrial graphene coating of low-voltage copper wires for power distributioncitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materials
- 2020Effect of Chemical Vapor Deposition WS2 on Viability and Differentiation of SH-SY5Y Cellscitations
- 2019Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphenecitations
- 2019Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphenecitations
- 2017The significance and challenges of direct growth of graphene on semiconductor surfacescitations
- 2016Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integrationcitations
- 2016Graphene growth on silicon carbidecitations
- 2016Graphene growth on silicon carbide: A reviewcitations
- 2014Controlling the surface roughness of epitaxial SiC on siliconcitations
Places of action
Organizations | Location | People |
---|
article
Graphene growth on silicon carbide: A review
Abstract
Graphene has been widely heralded over the last decade as one of the most promising nanomaterials for integrated, miniaturized applications spanning from nanoelectronics, interconnections, thermal management, sensing, to optoelectronics. Graphene grown on silicon carbide is currently the most likely candidate to fulfill this promise. As a matter of fact, the capability to synthesize high-quality graphene over large areas using processes and substrates compatible as much as possible with the well-established semiconductor manufacturing technologies is one crucial requirement. We review here, the enormous scientific and technological advances achieved in terms of epitaxial growth of graphene from thermal decomposition of bulk silicon carbide and the fine control of the graphene electronic properties through intercalation. Finally, we discuss perspectives on epitaxial graphene growth from silicon carbide on silicon, a particularly challenging area that could result in maximum benefit for the integration of graphene with silicon technologies.