Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moran, David

  • Google
  • 7
  • 25
  • 33

University of Glasgow

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2017Damage to Algan/Gan Power Device Materials from Cl2 and Ar Plasma Based Atomic Layer Etching and its Elimilation via a Low Temperature Rapid Thermal Annealingcitations
  • 2017High resolution structural characterisation of laser-induced defect clusters inside diamond21citations
  • 2012Direct Nano-Patterning of Commercially Pure Titanium with Ultra-Nanocrystalline Diamond Stampscitations
  • 2012Direct nanopatterning of commercially pure titanium with ultra-nanocrystalline diamond stamps9citations
  • 2012Charge dissipation layer optimisation for nano-scale electron-beam lithography pattern definition onto diamond3citations
  • 2009III-V MOSFET Fabrication and Device (Fabrication process of e.g. group III-V MOSFET for nano complementary metal oxide semiconductor application, involves heat treating metal contact structure to produce alloy region within semiconductor substrate)citations
  • 2008Ino.75Gao.25As channel III–V MOSFETs with leading performance metricscitations

Places of action

Chart of shared publication
Hemakumara, D.
1 / 1 shared
Cho, S.-J.
1 / 2 shared
Thayne, I.
1 / 1 shared
Li, Xu
5 / 10 shared
Floros, K.
1 / 1 shared
Maclaren, Donald
1 / 2 shared
Booth, Martin J.
1 / 1 shared
Courvoisier, Arnaud
1 / 1 shared
Salter, Patrick S.
1 / 1 shared
Gadegaard, Nikolaj
2 / 12 shared
Khokhar, A. Z.
1 / 5 shared
Seunarine, K.
2 / 2 shared
Greer, A. I. M.
3 / 3 shared
Khokhar, A.
1 / 1 shared
Abrokwah, J. K.
1 / 1 shared
Hill, R. H.
1 / 1 shared
Zhou, H.
2 / 11 shared
Zurcher, P.
1 / 1 shared
Passlack, M.
1 / 1 shared
Rajagopalan, K.
1 / 1 shared
Thayne, I. G.
2 / 2 shared
Hill, R. J. W.
1 / 1 shared
Asenov, A.
1 / 2 shared
Thoms, S.
1 / 2 shared
Macintyre, D. S.
1 / 1 shared
Chart of publication period
2017
2012
2009
2008

Co-Authors (by relevance)

  • Hemakumara, D.
  • Cho, S.-J.
  • Thayne, I.
  • Li, Xu
  • Floros, K.
  • Maclaren, Donald
  • Booth, Martin J.
  • Courvoisier, Arnaud
  • Salter, Patrick S.
  • Gadegaard, Nikolaj
  • Khokhar, A. Z.
  • Seunarine, K.
  • Greer, A. I. M.
  • Khokhar, A.
  • Abrokwah, J. K.
  • Hill, R. H.
  • Zhou, H.
  • Zurcher, P.
  • Passlack, M.
  • Rajagopalan, K.
  • Thayne, I. G.
  • Hill, R. J. W.
  • Asenov, A.
  • Thoms, S.
  • Macintyre, D. S.
OrganizationsLocationPeople

article

Direct nanopatterning of commercially pure titanium with ultra-nanocrystalline diamond stamps

  • Gadegaard, Nikolaj
  • Moran, David
  • Li, Xu
  • Seunarine, K.
  • Greer, A. I. M.
  • Khokhar, A.
Abstract

In order to directly imprint features into a hard metal such as titanium, an imprinting stamp composed of material of greater hardness is required. Diamond is the hardest known material, so is an obvious choice for the production of direct-imprint stamps. Diamond also benefits from a low surface energy, chemical inertness, high resistance to wear and is easily cleaned of contaminants, further favouring it as a stamp material of choice. Chemical vapour deposited ultra-nanocrystalline diamond (UNCD) provides similar mechanical properties to bulk single crystal diamond and can be deposited across large surface areas. This work examines the use of UNCD as a stamp medium for the transfer of nanoscale features into commercially pure titanium (cpTi) substrates. Development of an efficient and viable method for nanopatterning large, non-planar cpTi surfaces is highly desirable to control cell adhesion on the surface of bio-implants. The fabrication of UNCD nanoimprint stamps is detailed and the ability of UNCD to imprint cpTi is illustrated. A square-ordered matrix of 200 nm diameter pillars over a quarter mm square area are shown to be imprinted with the depth quantified against load (kg). The limitations of the technology are also discussed.

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • hardness
  • titanium
  • surface energy
  • commercially pure titanium