People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rolo, Ag
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
X-ray diffraction and Raman study of nanogranular BaTiO3-CoFe2O4 thin films deposited by laser ablation on Si/Pt substrates
Abstract
Nanocomposite thin films composed by (BaTiO3)(1-x)-(CoFe2O4)(x) with different cobalt ferrite concentrations (x) have been deposited by pulsed laser ablation on platinum covered Si(001) substrates. The films structure was studied by X-ray diffraction and Raman spectroscopy. It was found that the CoFe2O4 phase unit cell was compressed along the growth direction of the films, and it relaxed with increasing x. The opposite behavior was observed in the BaTiO3 phase where the lattice parameters obtained from the X-ray measurements presented a progressive distortion of its unit cell with increasing x. The presence of the strain in the films induced a blueshift of the Raman peaks of CoFe2O4 that decreased with increasing CoFe2O4 concentration. Cation disorder in the cobalt ferrite was observed for lower x, where the nanograins are more isolated and subjected to more strain, which was progressively decreased for higher CoFe2O4 content in the films. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.