Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cespedes, J. García

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006In-situ monitoring of laser annealing by micro-Raman spectroscopy for hydrogenated silicon nanoparticles produced in radio frequency glow discharge4citations

Places of action

Chart of shared publication
Jawhari, T.
1 / 3 shared
Bertran, E.
1 / 5 shared
García, J. Alvarez
1 / 1 shared
Hill, Daniel
1 / 2 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Jawhari, T.
  • Bertran, E.
  • García, J. Alvarez
  • Hill, Daniel
OrganizationsLocationPeople

article

In-situ monitoring of laser annealing by micro-Raman spectroscopy for hydrogenated silicon nanoparticles produced in radio frequency glow discharge

  • Jawhari, T.
  • Bertran, E.
  • García, J. Alvarez
  • Cespedes, J. García
  • Hill, Daniel
Abstract

<p>Low temperature Plasma Enhanced Chemical Vapour Deposition (PECVD) grown amorphous hydrogenated Si (a-Si: H) thin films form the basis of many photovoltaic and microelectronic devices such as solar cells and TFTs. Amorphous hydrogenated silicon in the form of nanoparticles has been produced by power modulation of the PECVD processes. The stability of these nanoparticles under high temperatures and high power illumination is therefore of interest and to this end we report on combined laser annealing and in-situ monitoring through the use of micro-raman spectroscopy. Interpretation of spectra is done with the help of complementary techniques including scanning (SEM) and transmission electron microscopy (TEM).</p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • amorphous
  • scanning electron microscopy
  • thin film
  • transmission electron microscopy
  • Silicon
  • annealing
  • Raman spectroscopy