Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Solonenko, Dmytro

  • Google
  • 4
  • 32
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers4citations
  • 2023AlYN Thin Films with High Y Content: Microstructure and Performance5citations
  • 2022Raman Spectroscopy and Spectral Signatures of AlScN/Al2O312citations
  • 2021High‐Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dots19citations

Places of action

Chart of shared publication
Krstić, Jugoslav B.
1 / 4 shared
Cvjetićanin, Nikola
1 / 5 shared
Finšgar, Matjaž
1 / 9 shared
Tadić, Nenad B.
1 / 9 shared
Vasiljević, Zorka Z.
1 / 12 shared
Nikolić, Maria Vesna
1 / 24 shared
Ahmetović, Sanita
1 / 2 shared
Bartolić, Dragana
1 / 2 shared
Mišković, Goran
1 / 2 shared
Pashchenko, Vladimir
1 / 2 shared
Strube, Jannik
1 / 1 shared
Fisslthaler, Evelin
1 / 7 shared
Moridi, Mohssen
2 / 2 shared
Risquez, Sarah
2 / 2 shared
Pilz, Julian
2 / 2 shared
Sinani, Taulant
1 / 1 shared
Bruckner, Gudrun
1 / 1 shared
Howell, Kaitlin
1 / 1 shared
Röbisch, Volker
1 / 1 shared
Fammels, Jannick
1 / 1 shared
Zukauskaite, Agne
1 / 11 shared
Barabash, Anastasiia
1 / 8 shared
Langner, Stefan
1 / 7 shared
Batentschuk, Miroslaw
1 / 2 shared
Zahn, Dietrich Rt
1 / 4 shared
Hauch, Jens
1 / 16 shared
Raievska, Oleksandra
1 / 5 shared
Stroyuk, Oleksandr
1 / 5 shared
Kupfer, Christian
1 / 2 shared
Osvet, Andres
1 / 10 shared
Brabec, Cj
1 / 407 shared
Azhniuk, Yuriy
1 / 1 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Krstić, Jugoslav B.
  • Cvjetićanin, Nikola
  • Finšgar, Matjaž
  • Tadić, Nenad B.
  • Vasiljević, Zorka Z.
  • Nikolić, Maria Vesna
  • Ahmetović, Sanita
  • Bartolić, Dragana
  • Mišković, Goran
  • Pashchenko, Vladimir
  • Strube, Jannik
  • Fisslthaler, Evelin
  • Moridi, Mohssen
  • Risquez, Sarah
  • Pilz, Julian
  • Sinani, Taulant
  • Bruckner, Gudrun
  • Howell, Kaitlin
  • Röbisch, Volker
  • Fammels, Jannick
  • Zukauskaite, Agne
  • Barabash, Anastasiia
  • Langner, Stefan
  • Batentschuk, Miroslaw
  • Zahn, Dietrich Rt
  • Hauch, Jens
  • Raievska, Oleksandra
  • Stroyuk, Oleksandr
  • Kupfer, Christian
  • Osvet, Andres
  • Brabec, Cj
  • Azhniuk, Yuriy
OrganizationsLocationPeople

article

High‐Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dots

  • Barabash, Anastasiia
  • Langner, Stefan
  • Batentschuk, Miroslaw
  • Zahn, Dietrich Rt
  • Hauch, Jens
  • Raievska, Oleksandra
  • Stroyuk, Oleksandr
  • Kupfer, Christian
  • Osvet, Andres
  • Brabec, Cj
  • Solonenko, Dmytro
  • Azhniuk, Yuriy
Abstract

<jats:title>Abstract</jats:title><jats:p>The feasibility of a high‐throughput robot‐assisted synthesis of complex Cu<jats:sub>1‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Ag<jats:italic><jats:sub>x</jats:sub></jats:italic>InS<jats:italic><jats:sub>y</jats:sub></jats:italic>Se<jats:sub>1‐</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic> (CAISSe) quantum dots (QDs) by spontaneous alloying of aqueous glutathione‐capped Ag–In–S, Cu–In–S, Ag–In–Se, and Cu–In–Se QDs is demonstrated. Both colloidal and thin‐film core CAISSe and core/shell CAISSe/ZnS QDs are produced and studied by high‐throughput semiautomated photoluminescence (PL) spectroscopy. The silver‐copper‐mixed QDs reveal clear evidence of a band bowing effect in the PL spectra and higher average PL lifetimes compared to the counterparts containing silver or copper only. The photophysical analysis of CAISSe and CAISSe/ZnS QDs indicates a composition‐dependent character of the nonradiative recombination in QDs. The rate of this process is found to be lower for mixed copper‐silver‐based QDs compared to Cu‐ or Ag‐only QDs. The combination of the band bowing effect and the suppressed nonradiative recombination of CAISSe QDs is beneficial for their applications in photovoltaics and photochemistry. The synergy of high‐throughput robotic synthesis and a high‐throughput characterization in this study is expected to grow into a self‐learning synthetic platform for the production of metal chalcogenide QDs for light‐harvesting, light‐sensing, and light‐emitting applications.</jats:p>

Topics
  • impedance spectroscopy
  • photoluminescence
  • silver
  • copper
  • quantum dot
  • Indium