People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kriechbaum, Manfred
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023On The Multiscale Structure and Morphology of PVDF‐HFP@MOF Membranes in The Scope of Water Remediation Applicationscitations
- 2023On The Multiscale Structure and Morphology of PVDF-HFP@MOF Membranes in The Scope of Water Remediation Applicationscitations
- 2023Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering
- 2023Poly(ethylene oxide)-block-poly(hexyl acrylate) Copolymers as Templates for Large Mesopore Sizes─A Detailed Porosity Analysiscitations
- 2023Lignin-Derived Mesoporous Carbon for Sodium-Ion Batteriescitations
- 2023The Nanostructured Self-Assembly and Thermoresponsiveness in Water of Amphiphilic Copolymers Carrying Oligoethylene Glycol and Polysiloxane Side Chainscitations
- 2023Synthesis and Characterization of Citric Acid-Modified Iron Oxide Nanoparticles Prepared with Electrohydraulic Discharge Treatmentcitations
- 2022Quantitative study on the face shear piezoelectricity and its relaxation in uniaxially-drawn and annealed poly-l-lactic acidcitations
- 2021Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applicationscitations
- 2021Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic dischargescitations
- 2020The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidationcitations
- 2018Synthesis and in vivo investigation of therapeutic effect of magnetite nanofluids in mouse prostate cancer model
- 2018High Hydrostatic Pressure Induces a Lipid Phase Transition and Molecular Rearrangements in Low-Density Lipoprotein Nanoparticlescitations
- 2018Mesostructure and physical properties of aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl sulfate doped with divalent sulfate salts in the liquid and the mesomorphic statescitations
- 2018Guerbet glycolipids from mannosecitations
- 2014Order vs. disorder — a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminatecitations
Places of action
Organizations | Location | People |
---|
article
High Hydrostatic Pressure Induces a Lipid Phase Transition and Molecular Rearrangements in Low-Density Lipoprotein Nanoparticles
Abstract
Low-density lipoproteins (LDL) are natural lipid transporter in human plasma whose chemically modified forms contribute to the progression of atherosclerosis and cardiovascular diseases accounting for a vast majority of deaths in westernized civilizations. For the development of new treatment strategies, it is important to have a detailed picture of LDL nanoparticles on a molecular basis. Through the combination of X-ray and neutron small-angle scattering (SAS) techniques with high hydrostatic pressure (HHP) this study describes structural features of normolipidemic, triglyceride-rich and oxidized forms of LDL. Due to the different scattering contrasts for X-rays and neutrons, information on the effects of HHP on the internal structure determined by lipid rearrangements and changes in particle shape becomes accessible. Independent pressure and temperature variations provoke a phase transition in the lipid core domain. With increasing pressure an interrelated anisotropic deformation and flattening of the particle are induced. All LDL nanoparticles maintain their structural integrity even at 3000 bar and show a reversible response toward pressure variations. The present work depicts the complementarity of pressure and temperature as independent thermodynamic parameters and introduces HHP as a tool to study molecular assembling and interaction processes in distinct lipoprotein particles in a nondestructive manner.