People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grenèche, Jean-Marc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Influence of Nd Substitution on the Phase Constitution in (Zr,Ce)Fe10Si2 Alloys with the ThMn12 Structurecitations
- 2018Exchange-Biased Fe 3− x O 4 -CoO Granular Composites of Different Morphologies Prepared by Seed-Mediated Growth in Polyol: From Core-Shell to Multicore Embedded Structurescitations
- 2017Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramicscitations
- 2016Structural behavior of laser-irradiated γ-Fe 2 O 3 nanocrystals dispersed in porous silica matrix : γ-Fe 2 O 3 to α-Fe 2 O 3 phase transition and formation of ε-Fe 2 O 3citations
- 2016New iron tetrazolate frameworks : synthesis temperature effect, thermal behaviour, Mössbauer and magnetic studiescitations
- 2015Structural investigations of iron oxynitride multilayered films obtained by reactive gas pulsing processcitations
- 2015New iron tetrazolate frameworkscitations
- 2015New iron tetrazolate frameworks:synthesis temperature effect, thermal behaviour, Mössbauer and magnetic studiescitations
- 2014Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Cantingcitations
- 2014Exchange-biased oxide-based core-shell nanoparticles produced by seed-mediated growth in polyolcitations
- 2013Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materialscitations
- 2012Insights into the Mechanism Related to the Phase Transition from γ-Fe2O3 to α-Fe2O3 Nanoparticles Induced by Thermal Treatment and Laser Irradiationcitations
- 2012Development of new anodes compatible with the solid oxide fuel cell electrolyte BaIn0.3Ti0.7O2.85citations
- 2004The titration of clay minerals I. Discontinuous backtitration technique combined with CEC measurements.citations
- 2000Microstructural and magnetic properties of Fe/Cr-substituted ferrite compositescitations
Places of action
Organizations | Location | People |
---|
article
Exchange-Biased Fe 3− x O 4 -CoO Granular Composites of Different Morphologies Prepared by Seed-Mediated Growth in Polyol: From Core-Shell to Multicore Embedded Structures
Abstract
Magnetically contrasted granular hetero‐nanostructures are prepared by seed‐mediated growth in polyol, properly combining two oxide phases with different magnetic order, ferrimagnetic (F) partially oxidized magnetite Fe3−xO4 and antiferromagnetic (AF) cobalt oxide. Spinel Fe3−xO4 nanoparticles are first synthesized and then used as seeds for rock salt CoO nanocrystals growth. Three different hetero‐nanostructure designs are realized, acting on the content ratio between the seeds and the deposit's precursors during the synthesis. For all of them, the spinel and the rock salt phases are confirmed by X‐ray diffraction and high‐resolution transmission electron microscopy. Both phases are obtained in high‐crystalline quality with a net epitaxial relationship between the two crystallographic lattices. Mössbauer spectrometry confirms the cobalt cation diffusion into the spinel seeds, giving favorable chemical interfacing with the rock salt deposit, thus prevailing its heterogeneous nucleation and consequently offering the best condition for exchange‐bias (EB) onset. Magnetic measurements confirm EB features. The overall magnetic properties are found to be a complex interplay between dipolar interactions, exchange anisotropy at the F/AF interface, and magnetocrystalline anisotropy enhancement in the F phase, due to Co2+ diffusion into iron oxide's crystalline lattice. These results underline the powerfulness of colloidal chemistry for functional granular hetero‐nanostructured material processing.