People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gheorghiu, Alexandru
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Electrochemical behavior of oxazoline-based plasma polymers for biosensing applications
Abstract
<p>Plasma-polymerized polyoxazoline (POx) thin films offer a fast, scalable, and solvent-free method of electrode functionalization through the unique chemistry of the oxazoline ring. However, for POx to be a viable green alternative to existing surface modification approaches, the films should be able to withstand the processing steps involved in biosensing. Here, the effects that current exposure, extended incubation, and repeated electrode rinses have on the electrochemical and physical stability of polymethyloxazoline thin films are investigated. The films are observed to become more diffusive after incubation and rinse steps. While no significant changes in chemistry were observed, a marked change in nanotopography occurred after exposure to current, suggesting a change in the polymer film structure.</p>