People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Merche, Delphine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Revisiting the surface characterization of plasma-modified polymers
Abstract
<p>Many papers dealing with the surface analysis of plasma polymers or plasma-modified polymers report the use of X-ray photoelectron spectroscopy (XPS) to quantify the surface composition. However, most of the time, quantification is performed using software that includes an equation based on the assumption that the sample is homogeneous in composition. However, for plasma-treated samples, this is often not the case. The usual analysis of XPS spectra does not allow the exact quantification in the case of an inhomogeneous sample. In this paper, we show that it is possible to obtain a depth profile of the composition, and a more accurate surface composition by using another mathematical approach for surface quantification, being QUASES Tougaard.</p>