People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kortshagen, Uwe R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Plasma-Synthesized Nitrogen-Doped Titanium Dioxide Nanoparticles With Tunable Visible Light Absorption and Photocatalytic Activitycitations
- 2020Plasmonic nanocomposites of zinc oxide and titanium nitridecitations
- 2020Nanocrystal-based inorganic nanocompositescitations
- 2019Silicon Quantum Dot-Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentratorscitations
- 2018Variable range hopping conduction in ZnO nanocrystal thin filmscitations
- 2017ZnO Nanocrystal Networks Near the Insulator-Metal Transitioncitations
- 2015Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinementcitations
- 2015Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfurcitations
- 2013Effects of water adsorption and surface oxidation on the electrical conductivity of silicon nanocrystal filmscitations
Places of action
Organizations | Location | People |
---|
article
Nanocrystal-based inorganic nanocomposites
Abstract
<p>Nanocrystal-based nanocomposites are biphasic materials with intriguing optoelectronic properties. They are formed through, first, plasma-synthesis of nanocrystals, followed by a second, supersonic impact deposition on translated substrates to form densely packed nanocrystal networks at high deposition rates. Third, dense nanocomposites are formed by subsequent infilling of the voids in the nanocrystal networks with a second phase matrix material using thermal- or plasma-enhanced atomic layer deposition. This paper reviews recent efforts to achieve excellent electronic transport in these nanocomposites. It then provides a perspective on how the biphasic nature of these materials can be used to independently control several materials properties and endow materials with multiple functionalities.</p>