Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Dommelen, Johannes A. W.

  • Google
  • 32
  • 50
  • 631

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (32/32 displayed)

  • 2024A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditions7citations
  • 2024Influence of the printing strategy on the microstructure and mechanical properties of thick-walled wire arc additive manufactured stainless steels13citations
  • 2023On the anisotropy of thick-walled wire arc additively manufactured stainless steel parts23citations
  • 2022Anisotropic mechanical properties of Selective Laser Sintered starch-based food28citations
  • 2022Microstructural modeling and measurements of anisotropic plasticity in large scale additively manufactured 316L stainless steel13citations
  • 2022A modular framework to obtain representative microstructural cells of additively manufactured parts4citations
  • 2021Micromechanical modeling of anisotropy and strain rate dependence of short-fiber-reinforced thermoplastics5citations
  • 2021Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating19citations
  • 2021Improved associated flow rule for anisotropic viscoplasticity in thermoplastic polymer systems3citations
  • 2021A novel 3D anisotropic Voronoi microstructure generator with an advanced spatial discretization scheme7citations
  • 2020Constitutive modeling of injection-molded short-fiber composites: Characterization and model application13citations
  • 2020Fracture behavior of tungsten-based composites exposed to steady-state/transient hydrogen plasma24citations
  • 2019An anisotropic viscoelastic-viscoplastic model for short-fiber composites26citations
  • 2019Micromechanical modeling of anisotropic behavior of oriented semicrystalline polymers18citations
  • 2018An Anisotropic Elasto-Viscoplastic Model for Short-Fiber Reinforced Polymerscitations
  • 2017Micromechanics of semicrystalline polymers: towards quantitative predictions17citations
  • 2017An anisotropic elasto-viscoplastic model for short-fiber reinforced polymerscitations
  • 2016Long term performance of fiber-reinforced polymerscitations
  • 2014A micromechanical study on the deformation kinetics of oriented semicrystalline polymers14citations
  • 2014Irreversible mixed mode interface delamination using a combined damage-plasticity cohesive zone enabling unloading20citations
  • 2014Characterisation and modelling of anisotropic thermo-mechanical behaviour of oriented polyethylene terephthalate9citations
  • 2013Micromechanical modelling of poly(ethylene terephthalate) using a layered two-phase approach10citations
  • 2013Micromechanical modelling of short-term and long-term large-strain behaviour of polyethylene terephthalate16citations
  • 2013Anisotropic yielding of injection molded polyethylene: experiments and modeling27citations
  • 2012An in situ experimental-numerical approach for characterization and prediction of interface delamination : application to CuLF-MCE systems8citations
  • 2012Rate- and temperature-dependent strain hardening of polycarbonate59citations
  • 2012Micromechanics of semicrystalline polymers : yield kinetics and long-term failure48citations
  • 2011Micromechanical modeling of the deformation kinetics of semicrystalline polymers41citations
  • 2010Micromechanical modeling of the elastic properties of semicrystalline polymers: a three-phase approach53citations
  • 2010Strain hardening and its relation to Bauschinger effects in oriented polymers86citations
  • 2010X-ray computed tomography based modelling of polymeric foams10citations
  • 2009Computed tomography-based modeling of structured polymers10citations

Places of action

Chart of shared publication
Wismans, Martijn
2 / 5 shared
Engels, Tom A. P.
1 / 33 shared
Van Breemen, Lambèrt C. A.
1 / 34 shared
Geers, Mgd Marc
13 / 117 shared
Hoefnagels, Jpm Johan
8 / 71 shared
Palmeira Belotti, Luca
5 / 8 shared
Ya, Wei
1 / 3 shared
Van Nuland, Tim
3 / 3 shared
Vonk, Niels H.
1 / 4 shared
Dijk, W. J. Van
1 / 1 shared
Jonkers, N.
1 / 4 shared
Zhang, Shaokang
1 / 1 shared
Govaert, Leon E.
21 / 90 shared
Loewenhoff, Th.
1 / 5 shared
Vernimmen, J. W. M.
1 / 5 shared
Temmerman, G. De
2 / 8 shared
Wirtz, M.
1 / 21 shared
Vermeij, Tijmen
1 / 12 shared
Morgan, Thomas
2 / 5 shared
Verbeken, K.
2 / 34 shared
Li, Y.
2 / 95 shared
Hütter, Markus
1 / 5 shared
Amiri-Rad, A.
2 / 2 shared
Geers, M. G. D.
1 / 95 shared
Pastukhov, Leonid
1 / 3 shared
Rad, Ahmad Amiri
1 / 1 shared
Terentyev, D.
1 / 43 shared
Rieth, M.
1 / 42 shared
Antusch, S.
1 / 28 shared
Pastukhov, L. V.
1 / 2 shared
Furmanski, Jevan
1 / 2 shared
Mirkhalaf, Mohsen
1 / 4 shared
Rad, A. Amiri
2 / 2 shared
Poluektov, M.
4 / 8 shared
Sedighiamiri, A.
5 / 10 shared
Anderson, Pd Patrick
1 / 50 shared
Zhang, S.
1 / 64 shared
Senden, D. J. A.
4 / 8 shared
Tranchida, D.
1 / 13 shared
Kolluri, M.
2 / 5 shared
Yakimets, I.
2 / 6 shared
Peters, Gwm Gerrit
2 / 39 shared
Van Der, O. Sluis
1 / 2 shared
Samimi, M.
1 / 2 shared
Krop, S.
1 / 4 shared
Kanters, M. J. W.
1 / 5 shared
Van, T. B. Erp
1 / 4 shared
Meijer, H. E. H.
2 / 46 shared
Wismans, J. G. F.
2 / 4 shared
Van Rietbergen, Bert
1 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017
2016
2014
2013
2012
2011
2010
2009

Co-Authors (by relevance)

  • Wismans, Martijn
  • Engels, Tom A. P.
  • Van Breemen, Lambèrt C. A.
  • Geers, Mgd Marc
  • Hoefnagels, Jpm Johan
  • Palmeira Belotti, Luca
  • Ya, Wei
  • Van Nuland, Tim
  • Vonk, Niels H.
  • Dijk, W. J. Van
  • Jonkers, N.
  • Zhang, Shaokang
  • Govaert, Leon E.
  • Loewenhoff, Th.
  • Vernimmen, J. W. M.
  • Temmerman, G. De
  • Wirtz, M.
  • Vermeij, Tijmen
  • Morgan, Thomas
  • Verbeken, K.
  • Li, Y.
  • Hütter, Markus
  • Amiri-Rad, A.
  • Geers, M. G. D.
  • Pastukhov, Leonid
  • Rad, Ahmad Amiri
  • Terentyev, D.
  • Rieth, M.
  • Antusch, S.
  • Pastukhov, L. V.
  • Furmanski, Jevan
  • Mirkhalaf, Mohsen
  • Rad, A. Amiri
  • Poluektov, M.
  • Sedighiamiri, A.
  • Anderson, Pd Patrick
  • Zhang, S.
  • Senden, D. J. A.
  • Tranchida, D.
  • Kolluri, M.
  • Yakimets, I.
  • Peters, Gwm Gerrit
  • Van Der, O. Sluis
  • Samimi, M.
  • Krop, S.
  • Kanters, M. J. W.
  • Van, T. B. Erp
  • Meijer, H. E. H.
  • Wismans, J. G. F.
  • Van Rietbergen, Bert
OrganizationsLocationPeople

article

Micromechanical modeling of anisotropic behavior of oriented semicrystalline polymers

  • Geers, Mgd Marc
  • Furmanski, Jevan
  • Van Dommelen, Johannes A. W.
  • Mirkhalaf, Mohsen
  • Govaert, Leon E.
Abstract

<p>Some manufacturing processes of polymeric materials, such as injection molding or film blowing, cause the final product to be highly anisotropic. In this study, the mechanical behavior of drawn polyethylene (PE) tapes is investigated via micromechanical modeling. An elasto-viscoplastic micromechanical model, developed within the framework of the so-called composite inclusion model, is presented to capture the anisotropic behavior of oriented semicrystalline PE. Two different phases, namely amorphous and crystalline (both described by elasto-viscoplastic constitutive models), are considered at the microstructural level. The initial oriented crystallographic structure of the drawn tapes is taken into account. It was previously shown by Sedighiamiri et al. (Comp. Mater. Sci. 2014, 82, 415) that by only considering the oriented crystallographic structure, it is not possible to capture the macroscopic anisotropic behavior of drawn tapes. The main contribution of this study is the development of an anisotropic model for the amorphous phase within the micromechanical framework. An Eindhoven glassy polymer (EGP)-based model including different sources of anisotropy, namely anisotropic elasticity, internal stress in the elastic network and anisotropic viscoplasticity, is developed for the amorphous phase and incorporated into the micromechanical model. Comparisons against experimental results reveal remarkable improvements of the model predictions (compared to micromechanical model predictions including isotropic amorphous domains) and thus the significance of the amorphous phase anisotropy on the overall behavior of drawn PE tapes.</p>

Topics
  • impedance spectroscopy
  • polymer
  • amorphous
  • inclusion
  • phase
  • anisotropic
  • composite
  • elasticity
  • isotropic
  • injection molding
  • semicrystalline