Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Melo, Jose Savio

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Mechanical hysteresis, interface and filler–filler structural breakdowns in ethylene vinyl acetate organoclay composites internally lubricated via radiolytically degraded PTFE microparticles4citations

Places of action

Chart of shared publication
Mondal, Raj Kumar
1 / 1 shared
Sastry, Pulya Umamaheswara
1 / 1 shared
Bhardwaj, Yatinder Kumar
1 / 1 shared
Varshney, Lalit
1 / 2 shared
Jayakrishnan, Vaisyappattu Balakrishnan
1 / 1 shared
Dubey, Kumar Abhinav
1 / 1 shared
Kumar, Jitendra
1 / 9 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Mondal, Raj Kumar
  • Sastry, Pulya Umamaheswara
  • Bhardwaj, Yatinder Kumar
  • Varshney, Lalit
  • Jayakrishnan, Vaisyappattu Balakrishnan
  • Dubey, Kumar Abhinav
  • Kumar, Jitendra
OrganizationsLocationPeople

article

Mechanical hysteresis, interface and filler–filler structural breakdowns in ethylene vinyl acetate organoclay composites internally lubricated via radiolytically degraded PTFE microparticles

  • Mondal, Raj Kumar
  • Sastry, Pulya Umamaheswara
  • Bhardwaj, Yatinder Kumar
  • Varshney, Lalit
  • Jayakrishnan, Vaisyappattu Balakrishnan
  • Dubey, Kumar Abhinav
  • Melo, Jose Savio
  • Kumar, Jitendra
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>Inclusion of two or more distinct fillers (hybrid fillers) in a matrix is envisaged to entail synergetic advantages. This study reports synthesis and property evaluation of a novel hybrid filler‐based polymer composite containing two types of fillers with distinct attributes namely mechanical reinforcement and internal lubrication. Poly(tetrafluoroethylene) micro‐particles (PTFEMP) were synthesized via radiolytic‐mechanical degradation and used as an internal lubricant for organoclay (OC) reinforced ethylene vinyl acetate (EVA) matrix. Mechanical hysteresis, nonlinear and linear small amplitude oscillatory shear rheology, morphology, small angle X‐ray scattering (SAXS), dynamic coefficient of friction (DCoF), surface wetting and thermoxidative stability of binary and ternary composites were investigated. In EVA/OC composites, PTFEMP acted as an internal lubricant and reduced DCoF in a volume fraction‐dependent fashion. OC and PTFEMP both increased the mechanical hysteresis of EVA; though the magnitude of hysteresis was much less in PTFEMP. Intriguingly, PTFEMP reduced mechanical hysteresis of EVA/OC composites that is work done during loading and unloading stress–strain cycles was considerably reduced with the inclusion of PTFEMP in EVA/OC composites. SAXS results revealed mass fractals and the presence of an interfacial layer in EVA/OC composites but not in EVA/PTFEMP composites. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. <jats:bold>2018</jats:bold>, <jats:italic>56</jats:italic>, 509–519</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • polymer
  • inclusion
  • laser emission spectroscopy
  • composite
  • small angle x-ray scattering
  • coefficient of friction