People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marcellan, Alba
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Double Networks: Hybrid Hydrogels with Clustered Silicacitations
- 2023Role of Polymer–Particle Adhesion in the Reinforcement of Hybrid Hydrogelscitations
- 2023Mechanisms of damage and fracture of aramid fibers: Focus on the role of microfibril cooperativity in fracture toughnesscitations
- 2023Mechanisms of damage and fracture of aramid fibers: Focus on the role of microfibril cooperativity in fracture toughnesscitations
- 2021Macromolecular Additives to Turn a Thermoplastic Elastomer into a Self-Healing Materialcitations
- 2021Towards an understanding of the mechanical response of aramid fibers at the filament scale
- 2019In Situ tensile tests to analyze the mechanical response, crack initiation, and crack propagation in single polyamide 66 fiberscitations
- 2016Thermoresponsive Toughening in LCST-Type Hydrogels with Opposite Topology: From Structure to Fracture Propertiescitations
- 2016Multiaxial mechanical behavior of aramid fibers and identification of skin/core structure from single fiber transverse compression testingcitations
- 2016Multiaxial mechanical behavior of aramid fibers and identification of skin/core structure from single fiber transverse compression testingcitations
- 2015Multi-axial mechanical behavior of aramid fibers and identification of skin/core structure from single fiber transverse compression testing
- 2014Rheology over five orders of magnitude in model hydrogels: agreement between strain-controlled rheometry, transient elastography, and supersonic shear wave imagingcitations
- 2013Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogelscitations
- 2013Stress–Strain Relationship of Highly Stretchable Dual Cross-Link Gels: Separability of Strain and Time Effectcitations
Places of action
Organizations | Location | People |
---|
article
Multiaxial mechanical behavior of aramid fibers and identification of skin/core structure from single fiber transverse compression testing
Abstract
The transverse and longitudinal mechanical properties of aramid fibers like Kevlar™ 29 (K29) fibers are strongly linked to their highly oriented structure. Mechanical characterization at the single fiber scale is challenging especially when the diameter is as small as 15 µm. Longitudinal tensile tests on single K29 fibers and single fiber transverse compression test (SFTCT) have been developed. Our approach consists of coupling morphological observations and mechanical experiments with SFTCT analysis by comparing analytical solutions and finite element modeling. New insights on the analysis of the transverse direction response are highlighted. Systematic loading/unloading compression tests enable to experimentally determine a transverse elastic limit. Taking account of the strong anisotropy of the fiber, the transverse mechanical response sheds light on a skin/core architecture. More importantly, results suggest that the skin of the fiber, typically representing a shell of one micrometer in thickness, has a transverse apparent modulus of 0.2 GPa. That is around more than fifteen times lower than the transverse modulus of 3.0 GPa in the core. By comparison, the measured longitudinal modulus is about 84 GPa. The stress distribution in the fiber is explored and the critical areas for damage initiation are discussed.