Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kyritsis, A.

  • Google
  • 10
  • 51
  • 194

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2018Piezoresistivity of conductive polymer nanocomposites: Experiment and modeling20citations
  • 2016Dielectric relaxations of nanocomposites composed of HEUR polymers and magnetite nanoparticles4citations
  • 2015Porous polylactic acid-silica hybrids: preparation, characterization, and study of mesenchymal stem cell osteogenic differentiation7citations
  • 2014Chitosan-Silica Hybrid Porous Membranes64citations
  • 2012Thermal transitions and dynamics in nanocomposite hydrogels2citations
  • 2011Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites42citations
  • 2011Water and polymer dynamics in poly(hydroxyl ethyl acrylate-co-ethyl acrylate) copolymer hydrogels12citations
  • 2011Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites39citations
  • 2011Polymer segmental dynamics and solvent thermal transitions in Poly(ethyl acrylate)/p-xylene mixtures4citations
  • 2007Thermal and electrical characterization of polypropylene/carbon nanotube nanocompositescitations

Places of action

Chart of shared publication
Kontou, E.
1 / 1 shared
Pissis, P.
6 / 16 shared
Omastová, M.
2 / 14 shared
Georgousis, Georgios
1 / 1 shared
Mičušík, M.
2 / 10 shared
Appavou, M. S.
1 / 3 shared
Raftopoulos, K. N.
1 / 2 shared
Brás, A.
1 / 1 shared
Vassiliadou, O.
1 / 1 shared
Papadakis, C. M.
1 / 23 shared
Müller-Buschbaum, Peter
1 / 471 shared
Campanella, A.
1 / 3 shared
Frielinghaus, H.
1 / 8 shared
Ribelles, J. L. Gómez
2 / 7 shared
Kripotou, S.
1 / 3 shared
Trujillo, S.
1 / 1 shared
Rodenas Rochina, Joaquín
1 / 1 shared
Madeira, S.
2 / 9 shared
Matos, Joana
1 / 4 shared
Mano, J. F.
2 / 428 shared
Pandis, C.
5 / 7 shared
Matos, J.
1 / 4 shared
Hartmann, L.
2 / 5 shared
Pelster, R.
2 / 2 shared
Gómez Ribelles, José Luís
4 / 23 shared
Shinyashiki, N.
3 / 5 shared
Rodríguez Hernández, José Carlos
3 / 5 shared
Monleón Pradas, Manuel
2 / 4 shared
Spanoudaki, Anna
1 / 3 shared
Krusteva, E.
1 / 3 shared
Pezzuto, M.
1 / 1 shared
Kotsilkova, Rumiana
1 / 28 shared
Silvestre, C.
1 / 2 shared
Duraccio, D.
1 / 6 shared
Ivanov, E.
1 / 8 shared
Logakis, E.
3 / 11 shared
Spanoudaki, A.
2 / 2 shared
Pissis, Polykarpos
1 / 1 shared
Vodnik, V. V.
1 / 1 shared
Nedeljkovic, J. M.
1 / 1 shared
Dzunuzovic, E.
1 / 1 shared
Djokovic, V.
1 / 1 shared
Romero Colomer, Francisco José
1 / 1 shared
Christodoulides, C.
1 / 1 shared
Stathopoulos, A. T.
1 / 1 shared
Peoglos, V.
1 / 5 shared
Piönteck, J.
1 / 1 shared
Chorianopoulos, M.
1 / 1 shared
Pandis, Ch.
1 / 4 shared
Krupa, I.
1 / 11 shared
Pötschke, Petra
1 / 330 shared
Chart of publication period
2018
2016
2015
2014
2012
2011
2007

Co-Authors (by relevance)

  • Kontou, E.
  • Pissis, P.
  • Omastová, M.
  • Georgousis, Georgios
  • Mičušík, M.
  • Appavou, M. S.
  • Raftopoulos, K. N.
  • Brás, A.
  • Vassiliadou, O.
  • Papadakis, C. M.
  • Müller-Buschbaum, Peter
  • Campanella, A.
  • Frielinghaus, H.
  • Ribelles, J. L. Gómez
  • Kripotou, S.
  • Trujillo, S.
  • Rodenas Rochina, Joaquín
  • Madeira, S.
  • Matos, Joana
  • Mano, J. F.
  • Pandis, C.
  • Matos, J.
  • Hartmann, L.
  • Pelster, R.
  • Gómez Ribelles, José Luís
  • Shinyashiki, N.
  • Rodríguez Hernández, José Carlos
  • Monleón Pradas, Manuel
  • Spanoudaki, Anna
  • Krusteva, E.
  • Pezzuto, M.
  • Kotsilkova, Rumiana
  • Silvestre, C.
  • Duraccio, D.
  • Ivanov, E.
  • Logakis, E.
  • Spanoudaki, A.
  • Pissis, Polykarpos
  • Vodnik, V. V.
  • Nedeljkovic, J. M.
  • Dzunuzovic, E.
  • Djokovic, V.
  • Romero Colomer, Francisco José
  • Christodoulides, C.
  • Stathopoulos, A. T.
  • Peoglos, V.
  • Piönteck, J.
  • Chorianopoulos, M.
  • Pandis, Ch.
  • Krupa, I.
  • Pötschke, Petra
OrganizationsLocationPeople

article

Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites

  • Krusteva, E.
  • Pezzuto, M.
  • Kotsilkova, Rumiana
  • Silvestre, C.
  • Duraccio, D.
  • Pissis, P.
  • Kyritsis, A.
  • Ivanov, E.
  • Logakis, E.
Abstract

<jats:title>Abstract</jats:title><jats:p>We report on the effect of processing conditions on rheology, thermal and electrical properties of nanocomposites containing 0.02–0.3 wt % multiwall carbon nanotubes in an epoxy resin. The influence of the sonication, the surface functionalization during mixing, as well as the application of external magnetic field (EMF) throughout the curing process was examined. Rheological tests combined with optical microscopy visualization are proved as a very useful methodology to determine the optimal processing conditions for the preparation of the nanocomposites. The Raman spectra provide evidence for more pronounced effect on the functionalized with hardener compositions, particularly by curing upon application of EMF. Different chain morphology of CNTs is created depending of the preparation conditions, which induced different effects on the thermal and electrical properties of the nanocomposites. The thermal degradation peak is significantly shifted towards higher temperatures by increasing the nanotube content, this confirming that even the small amount of carbon nanotubes produces a strong barrier effect for the volatile products during the degradation. The ac conductivity measurements revealed lower values of the percolation threshold (pc) in the range of 0.03–0.05 wt %. CNTs for the nanocomposites produced by preliminary dispersing of nanotubes in the epoxy resin, compared to those prepared by preliminary functionalization of the nanotubes in the amine hardener. This is attributed to the higher viscosity and stronger interfacial interactions of the amine hardener/CNT dispersion which restricts the reorganization of the nanotubes. The application of the EMF does not influence the pc value but the dc conductivity values (σ<jats:sub>dc</jats:sub>) of the nanocomposites increased at about one order of magnitude due to the development of the aforementioned chain structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • surface
  • Carbon
  • nanotube
  • viscosity
  • optical microscopy
  • resin
  • functionalization
  • amine
  • curing