Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Faught, Marybeth

  • Google
  • 1
  • 5
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Synthesis and characterization of block copolymer/ceramic precursor nanocomposites based on a polysilazane27citations

Places of action

Chart of shared publication
Wiesner, Ulrich
1 / 19 shared
Zhang, Yuanming
1 / 1 shared
Curry, Chris
1 / 1 shared
Garcia, Carlos B. W.
1 / 3 shared
Lovell, Conrad
1 / 1 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Wiesner, Ulrich
  • Zhang, Yuanming
  • Curry, Chris
  • Garcia, Carlos B. W.
  • Lovell, Conrad
OrganizationsLocationPeople

article

Synthesis and characterization of block copolymer/ceramic precursor nanocomposites based on a polysilazane

  • Wiesner, Ulrich
  • Zhang, Yuanming
  • Curry, Chris
  • Faught, Marybeth
  • Garcia, Carlos B. W.
  • Lovell, Conrad
Abstract

<jats:title>Abstract</jats:title><jats:p>The amphiphilic block copolymer poly(isoprene‐<jats:italic>block</jats:italic>‐ethylene oxide) was used as a structure‐directing agent for a polysilazane preceramic polymer commercially known as Ceraset. Two block copolymers of different molecular weights and poly(ethylene oxide) weight fractions with body‐centered cubic sphere and hexagonal cylinder morphologies were used. To both polymers, 50 wt % of the silazane oligomer (Ceraset) was added. The resulting composites were cast into films and characterized by small‐angle X‐ray scattering and transmission electron microscopy. The silazane was chemically compatible with the poly(ethylene oxide) microdomains of the block copolymer, and this resulted in a swelling of those domains. After the cooperative self‐assembly of the block copolymer and Ceraset, for both systems the structure was permanently set in the lamellar morphology by the crosslinking of the silazane oligomer with a radical initiator at 120 °C. These results suggest that the use of block copolymer mesophases may provide a simple and easily controlled pathway for the preparation of various high‐temperature SiCN‐type ceramic mesostructures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3346–3350, 2003</jats:p>

Topics
  • nanocomposite
  • morphology
  • transmission electron microscopy
  • ceramic
  • molecular weight
  • copolymer
  • block copolymer