People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Badri, Albert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization
Abstract
Graphene nanosheets possess a range of extraordinary physical and electrical properties with enormous potential for applications in microelectronics, photonic devices, and nanocomposite materials. However, single graphene platelets tend to undergo agglomeration due to strong p-p and Van der Waals interactions, which significantly compromises the final material properties. One of the strategies to overcome this problem, and to increase graphene compatibility with a receiving polymer host matrix, is to modify graphene (or graphene oxide (GO)) with polymer brushes. The research to date can be grouped into approaches involving grafting-from and grafting-to techniques, and further into approaches relying on covalent or noncovalent attachment of polymer chains to the suitably modified graphene/GO. The present Highlight article describes research efforts to date in this area, focusing on the use of controlled/living radical polymerization techniques.