People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schmid, Christina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
An efficient avenue to poly(styrene)-block-poly(epsilon-caprolactone) polymers via switching from RAFT to hydroxyl functionality: Synthesis and characterization
Abstract
The recently introduced procedure of quantitatively switching thiocarbonyl thio capped (RAFT) polymers into hydroxyl terminated species was employed to generate narrow polydispersity (PDI ≈ 1.2) sulfur-free poly(styrene)-block- poly(ε-caprolactone) polymers (26,000 ≤ M ·mol-1 < 45,000). The ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) was conducted under organocatalysis employing 1,5,7-triazabicyclo[4. 4.0]dec-5-ene (TBD). The obtained block copolymers were thoroughly analyzed via size exclusion chromatography (SEC), NMR, as well as liquid adsorption chromatography under critical conditions coupled to SEC (LACCC-SEC) to evidence the block copolymer structure and the efficiency of the synthetic process. The current contribution demonstrates that the RAFT process can serve as a methodology for the generation of sulfur-free block copolymers via an efficient end group switch. Copyright © 2010 Wiley Periodicals, Inc.