Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seraidaris, Tanja

  • Google
  • 1
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006High-molar-mass polypropene with tunable elastic properties by hafnocene/borate catalysts4citations

Places of action

Chart of shared publication
Leskelä, Markku Antero
1 / 124 shared
Seppälä, Jukka
1 / 42 shared
Karesoja, Mikko
1 / 8 shared
Löfgren, Barbro
1 / 1 shared
Puranen, Arto
1 / 1 shared
Repo, Timo
1 / 15 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Leskelä, Markku Antero
  • Seppälä, Jukka
  • Karesoja, Mikko
  • Löfgren, Barbro
  • Puranen, Arto
  • Repo, Timo
OrganizationsLocationPeople

article

High-molar-mass polypropene with tunable elastic properties by hafnocene/borate catalysts

  • Leskelä, Markku Antero
  • Seppälä, Jukka
  • Seraidaris, Tanja
  • Karesoja, Mikko
  • Löfgren, Barbro
  • Puranen, Arto
  • Repo, Timo
Abstract

"Elastic polypropene has gained growing industrial and academic interest as a thermoplastic elastomer. In this study, ""rac""- and ""meso""-dimethylsilyl(3-benzylindenyl)(2-methylindenyl)hafnium dichloride complexes (Hfr and Hfm, respectively), activated with [NHMe2Ph][B(C6F5)(4)]/triisobutyl aluminum, were used in propene polymerization. Using these catalyst systems, we obtained polymers with high molar masses, up to 550 kg/mol, and moderate isotacticities between 34 and 52%. By varying the polymerization conditions, we could modify the polymer microstructure and molar mass. C-13 NMR was used to calculate the polymer pentad sequence distributions. The crystalline parts of the polymers were analyzed with the differential scanning calorimetry successive self-nucleation and annealing (SSA) technique. The SSA thermograms revealed that Hfr produced polypropene with a more uniform lamellar structure than Hfm. The mechanical properties were tested with dynamic mechanical analysis creep-recovery tests. In the series, the polymers with the lowest isotacticities and therefore lowest crystallinities showed the best elastic properties. (c) 2006 Wiley Periodicals, Inc."

Topics
  • aluminium
  • differential scanning calorimetry
  • annealing
  • thermoplastic
  • Nuclear Magnetic Resonance spectroscopy
  • creep
  • hafnium
  • lamellae
  • dynamic mechanical analysis
  • elastomer
  • thermoplastic elastomer