Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mckenna, Gregory

  • Google
  • 3
  • 12
  • 100

Processes and Engineering in Mechanics and Materials

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024AFM dilatometry measurements on ultra‐stable fluoropolymer glasses: Further evidence of extreme fictive temperature reduction3citations
  • 2021Dynamics and rheology of ring-linear blend semidilute solutions in extensional flow: Single molecule experiments27citations
  • 2013Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites70citations

Places of action

Chart of shared publication
Banna, Amer A. El
1 / 2 shared
Lee, Megan
1 / 1 shared
Sing, Charles
1 / 2 shared
Schroeder, Charles M.
1 / 1 shared
Banik, Sourya
1 / 1 shared
Kong, Dejie
1 / 1 shared
Sollogoub, Cyrille
1 / 42 shared
Li, Xiguang
1 / 2 shared
Miquelard-Garnier, Guillaume
1 / 20 shared
Rozanski, Artur
1 / 9 shared
Guinault, Alain
1 / 44 shared
Regnier, Gilles
1 / 16 shared
Chart of publication period
2024
2021
2013

Co-Authors (by relevance)

  • Banna, Amer A. El
  • Lee, Megan
  • Sing, Charles
  • Schroeder, Charles M.
  • Banik, Sourya
  • Kong, Dejie
  • Sollogoub, Cyrille
  • Li, Xiguang
  • Miquelard-Garnier, Guillaume
  • Rozanski, Artur
  • Guinault, Alain
  • Regnier, Gilles
OrganizationsLocationPeople

article

AFM dilatometry measurements on ultra‐stable fluoropolymer glasses: Further evidence of extreme fictive temperature reduction

  • Mckenna, Gregory
  • Banna, Amer A. El
Abstract

<jats:title>Abstract</jats:title><jats:p>Ultra‐stable amorphous fluoropolymers glasses were created using vacuum pyrolysis deposition (VPD). Glass films with thickness ranging from 90 to 160 nm were grown at a substrate temperature of 0.86 <jats:italic>T</jats:italic><jats:sub>g</jats:sub>, where <jats:italic>T</jats:italic><jats:sub>g</jats:sub> is the glass transition temperature of the virgin polymer and is in units of K. Atomic force microscope (AFM) dilatometry measurements were conducted to investigate density behavior of the ultra‐stable glasses. Thickness measurements were made in stepwise fashion over a range of temperatures from ambient to above the <jats:italic>T</jats:italic><jats:sub>g</jats:sub>. Results show that the intersections of the line for the equilibrium liquid and those for the rejuvenated and stable glasses identifying the fictive temperature <jats:italic>T</jats:italic><jats:sub>f</jats:sub> result in <jats:italic>T</jats:italic><jats:sub>f, rejuvenated</jats:sub> = 347.3 K and <jats:italic>T</jats:italic><jats:sub>f, stable</jats:sub> = 269.5 K, that is, nearly 80 K below the <jats:italic>T</jats:italic><jats:sub>g</jats:sub> of the rejuvenated material and well below the notional Kauzmann temperature as estimated from the Vogel‐Fultcher‐Tammann (VFT) analysis of the cooling rate dependence of the calorimetric glass transition temperature reported previously. The results corroborate the published calorimetric results on the same ultra‐stable fluoropolymer glasses that witnessed <jats:italic>T</jats:italic><jats:sub>f</jats:sub> reductions of up to 62.6 K below the <jats:italic>T</jats:italic><jats:sub>g</jats:sub> of the rejuvenated system. In addition, to demonstrate the versatility of the AFM dilatometry methodology for the thin film response, isothermal de‐aging experiments were carried out to illustrate the devitrification kinetics. We also carried out one of the Kovacs’ signature key experiments, the asymmetry of approach, to further illustrate the method.</jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • polymer
  • amorphous
  • experiment
  • thin film
  • atomic force microscopy
  • glass
  • glass
  • glass transition temperature
  • aging
  • aging
  • dilatometry
  • vacuum pyrolysis