People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Araya-Hermosilla, Esteban
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Rapid self-healing in IR-responsive plasmonic indium tin oxide/polyketone nanocompositescitations
- 2022Synthesis of poly(1-vinylimidazole)-block-poly(9-vinylcarbazole) copolymers via RAFT and their use in chemically responsive graphitic compositescitations
- 2022Rapid Self-Healing in IR-Responsive Plasmonic Indium Tin Oxide/Polyketone Nanocompositescitations
- 2022One-step functionalization of mildly and strongly reduced graphene oxide with maleimide: an experimental and theoretical investigation of the Diels-Alder [4+2] cycloaddition reactioncitations
- 2021Thermally Switchable Electrically Conductive Thermoset rGO/PK Self-Healing Compositescitations
- 2021Thermally Switchable Electrically Conductive Thermoset rGO/PK Self-Healing Compositescitations
- 2020Mechanical properties and electrical surface charges of microfibrillated cellulose/imidazole-modified polyketone composite membranescitations
- 2020Mechanical properties and electrical surface charges of microfibrillated cellulose/imidazole-modified polyketone composite membranescitations
- 2016An easy synthetic way to exfoliate and stabilize MWCNTs in a thermoplastic pyrrole-containing matrix assisted by hydrogen bondscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of poly(1-vinylimidazole)-block-poly(9-vinylcarbazole) copolymers via RAFT and their use in chemically responsive graphitic composites
Abstract
This study reports the synthesis of novel poly(1-vinylimidazole)-b-poly(9-vinylcarbazole) (PVI-b-PVK) block copolymers with varying monomer ratios using reversible addition-fragmentation chain-transfer (RAFT) polymerization and their incorporation in responsive composite materials. Specifically, non-covalent exfoliation of two different conductive fillers, multi-walled carbon nanotubes (MWCNTs) or reduced graphene oxide (rGO), was studied. The percolation threshold of the synthesized nanocomposites was dependent on the polymer used for dispersion, showing a better affinity of the fillers for block copolymers with higher relative carbazole content. Resistivity measurements showed selective variation in the resistance signal when the materials were exposed to various organic solvents and acids, providing a good basis for the design of sensing devices.