Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Niskanen, Jukka

  • Google
  • 7
  • 36
  • 101

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Wood flour and Kraft lignin enable air-drying of the nanocellulose-based 3D-printed structures5citations
  • 2022Probing interfacial interactions and dynamics of polymers enclosed in boron nitride nanotubescitations
  • 2021Ionic Liquid Containing Block Copolymer Dielectrics : Designing for High-Frequency Capacitance, Low-Voltage Operation, and Fast Switching Speeds20citations
  • 2013pH dependent polymer surfactants for hindering BSA adsorption to oil-water interfacecitations
  • 2013Thermoresponsiveness of PDMAEMA. Electrostatic and stereochemical effects66citations
  • 2012Polymer-Modulated Optical Properties of Gold Sols5citations
  • 2012Polymer-Modulated Optical Properties of Gold Sols5citations

Places of action

Chart of shared publication
Abidnejad, Roozbeh
1 / 6 shared
Ajdary, Rubina
1 / 9 shared
Kallio, Tanja
1 / 38 shared
Borghei, Maryam
1 / 16 shared
Kontturi, Eero
1 / 28 shared
Baniasadi, Hossein
1 / 21 shared
Robertson, Daria
1 / 2 shared
Mousavihashemi, Seyedabolfazl
1 / 6 shared
Pellerin, Christian
1 / 1 shared
Winnik, Françoise M.
1 / 3 shared
Golberg, Dmitri
1 / 1 shared
Vapaavuori, Jaana
1 / 19 shared
Xue, Yanming
1 / 3 shared
Brixi, Samantha
1 / 1 shared
Peltekoff, Alexander J.
1 / 1 shared
Lessard, Benoît H.
1 / 2 shared
Jorgensen, Lene
1 / 5 shared
Tenhu, Heikki
4 / 35 shared
Colak, Sulan
1 / 1 shared
Guzman, Paulina
1 / 1 shared
Medlicott, Natalie
1 / 1 shared
Baldursdottir, Stefania
1 / 3 shared
Alhoranta, Anu
1 / 1 shared
Fuller, Gerald G.
1 / 8 shared
Hietala, Sami
1 / 19 shared
Ostrowski, Maggie
1 / 1 shared
Wu, Cynthia
1 / 1 shared
Said-Mohamed, Cynthia
2 / 2 shared
Maioli, Paolo
2 / 6 shared
Del Fatti, Natalia
1 / 4 shared
Vallée, Fabrice
1 / 5 shared
Lairez, Didier
2 / 3 shared
Lay-Theng, Lee
1 / 1 shared
Fatti, Natalia Del
1 / 3 shared
Lee, Lay-Theng
1 / 3 shared
Vallee, Fabrice
1 / 1 shared
Chart of publication period
2024
2022
2021
2013
2012

Co-Authors (by relevance)

  • Abidnejad, Roozbeh
  • Ajdary, Rubina
  • Kallio, Tanja
  • Borghei, Maryam
  • Kontturi, Eero
  • Baniasadi, Hossein
  • Robertson, Daria
  • Mousavihashemi, Seyedabolfazl
  • Pellerin, Christian
  • Winnik, Françoise M.
  • Golberg, Dmitri
  • Vapaavuori, Jaana
  • Xue, Yanming
  • Brixi, Samantha
  • Peltekoff, Alexander J.
  • Lessard, Benoît H.
  • Jorgensen, Lene
  • Tenhu, Heikki
  • Colak, Sulan
  • Guzman, Paulina
  • Medlicott, Natalie
  • Baldursdottir, Stefania
  • Alhoranta, Anu
  • Fuller, Gerald G.
  • Hietala, Sami
  • Ostrowski, Maggie
  • Wu, Cynthia
  • Said-Mohamed, Cynthia
  • Maioli, Paolo
  • Del Fatti, Natalia
  • Vallée, Fabrice
  • Lairez, Didier
  • Lay-Theng, Lee
  • Fatti, Natalia Del
  • Lee, Lay-Theng
  • Vallee, Fabrice
OrganizationsLocationPeople

article

Probing interfacial interactions and dynamics of polymers enclosed in boron nitride nanotubes

  • Pellerin, Christian
  • Winnik, Françoise M.
  • Golberg, Dmitri
  • Vapaavuori, Jaana
  • Xue, Yanming
  • Niskanen, Jukka
Abstract

Understanding interfacial interactions in polymer systems is crucial for their applicability for instance in adhesives and coatings. Enclosing polymers in a cylindrical volume provides a system for studying interactions dictated by a continuous interfacial layer and a bulk-like volume in the middle of the cylinders. Here, we describe a simple method for enclosing polymers into boron nitride nanotubes (BNNTs) and establishing the effect of the interfacial interactions on the glass transition temperature (T g ) of the polymers by infrared spectroscopy. The volume of the inner channel is large in comparison to the volume of the loaded polymer coils, allowing the polymer to expand along the inner channel, resulting in the effect of interfacial interactions on polymer dynamics dominating over confinement effects. As examples, we loaded poly(4-vinyl pyridine), poly(methyl methacrylate), poly(vinyl pyrrolidone), and poly(disperse red 1 acrylate) in BNNTs. The strongest interaction between the studied polymer and BNNTs was observed for poly(4-vinyl pyridine), which also caused a significant increase of T g . In addition to characterizing the effect of interfacial interactions on the thermal transitions of the polymers, this method, which is generalizable to most soluble polymer materials, can be used for studying photoinduced transitions in photoactive polymers thanks to the transparency of the BNNTs at visible wavelengths.

Topics
  • impedance spectroscopy
  • polymer
  • nanotube
  • glass
  • glass
  • nitride
  • thermogravimetry
  • glass transition temperature
  • Boron
  • interfacial
  • infrared spectroscopy
  • liquid-liquid chromatography