People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Menyhárd, Alfréd
K.A. Rasmussen (Norway)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Prediction of tensile modulus from calorimetric melting curves of polylactic acid with pronounced cold crystallization abilitycitations
- 2020Modeling of light scattering and haze in semicrystalline polymerscitations
- 2020Self‐organization of micro reinforcements and the rules of crystal formation in polypropylene nucleated by non‐selective nucleating agents with dual nucleating abilitycitations
- 2018Prediction of tensile modulus of semicrystalline polymers from a single melting curve recorded by calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
Modeling of light scattering and haze in semicrystalline polymers
Abstract
This article reports a new model approach for the description of light scattering in semicrystalline polymers, to describe more precisely the influence of supermolecular structure on the optical properties. This is the first study in which light scattering of polymer films has been modeled using exact Mie scattering theory of radially anisotropic spheres. As a model material a well‐known polymer, isotactic polypropylene (iPP) was used. Samples were prepared with different sample thicknesses and crystalline structures in order to identify the key parameters of light scattering in polycrystalline polymeric systems. Validation haze measurements were carried out with a spectrophotometer equipped with a 150 mm snap‐in integrating sphere. It was found that the optical properties of the polycrystalline sample can be described using multiple light scattering on these scattering centers. Good agreement was found between the simulated and experimentally measured haze values which proves the reliability and applicability of our new approach.