People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luchinsky, Dmitry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Welding dynamics in an atomistic model of an amorphous polymer blend with polymer-polymer interfacecitations
- 2014Modeling wave propagation in sandwich composite plates for structural health monitoring
- 2013Self-organized enhancement of conductivity in biological ion channelscitations
- 2013Modeling wave propagation and scattering from impact damage for structural health monitoring of composite sandwich platescitations
- 2013Stochastic dynamics of remote knock-on permeation in biological ion channelscitations
- 2011High-fidelity modeling for health monitoring in honeycomb sandwich structurescitations
- 2011Comparisons of SHM sensor models with empirical test data for sandwich composite structures
- 2011Wave propagation and scattering in sandwich composite panels
- 2010Theoretical background and prognostic modeling for benchmarking SHM sensors for composite structures
Places of action
Organizations | Location | People |
---|
article
Welding dynamics in an atomistic model of an amorphous polymer blend with polymer-polymer interface
Abstract
We consider an atomistic model of thermal welding at the polymer-polymer interface of a polyetherimide/polycarbonate blend, motivated by applications to 3D manufacturing in space. We follow diffusion of semiflexible chains at the interface and analyze strengthening of the samples as a function of the welding time tw by simulating the strain-stress and shear viscosity curves. The time scales for initial wetting, and for fast and slow diffusion, are revealed. It is shown that each component of the polymer blend has its own characteristic time of slow diffusion at the interface. Analysis of strainstress demonstrates saturation of the Young’s modulus at tw = 240 ns, while the tensile strength continues to increase. The shear viscosity is found to have a very weak dependence on the welding time for tw > 60 ns. It is shown that both strain-stress and shear viscosity curves agree with experimental data.