Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nicolas, Clémence

  • Google
  • 4
  • 15
  • 17

Processes and Engineering in Mechanics and Materials

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Enhanced thermo-oxidative stability of polydicyclopentadiene containing covalently bound nitroxide groupscitations
  • 2020Polynorbornene‐ g ‐poly(ethylene oxide) Through the Combination of ROMP and Nitroxide Radical Coupling Reactions4citations
  • 2020Poly(norbornenyl azlactone) as a versatile platform for sequential double click postpolymerization modification9citations
  • 2020Polynorbornene‐<i>g</i>‐poly(ethylene oxide) Through the Combination of ROMP and Nitroxide Radical Coupling Reactions4citations

Places of action

Chart of shared publication
Recher, Gilles
1 / 1 shared
Gac, Pierre-Yves Le
1 / 2 shared
Drozdzak, Renata
1 / 2 shared
David, Adelina
1 / 5 shared
Fontaine, Laurent
4 / 14 shared
Montembault, Véronique
2 / 3 shared
Richaud, Emmanuel
1 / 23 shared
Minne, Wendy
1 / 1 shared
Huang, Jing
1 / 7 shared
Zhang, Wenhao
2 / 4 shared
Montembault, V.
2 / 11 shared
Choppé, Emilie
1 / 1 shared
François, Francesca
1 / 1 shared
Forcher, Gwénaël
1 / 1 shared
Choppé, Émilie
1 / 1 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Recher, Gilles
  • Gac, Pierre-Yves Le
  • Drozdzak, Renata
  • David, Adelina
  • Fontaine, Laurent
  • Montembault, Véronique
  • Richaud, Emmanuel
  • Minne, Wendy
  • Huang, Jing
  • Zhang, Wenhao
  • Montembault, V.
  • Choppé, Emilie
  • François, Francesca
  • Forcher, Gwénaël
  • Choppé, Émilie
OrganizationsLocationPeople

article

Polynorbornene‐<i>g</i>‐poly(ethylene oxide) Through the Combination of ROMP and Nitroxide Radical Coupling Reactions

  • Zhang, Wenhao
  • Choppé, Émilie
  • Fontaine, Laurent
  • Montembault, Véronique
  • Nicolas, Clémence
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>Grafting‐onto and grafting‐through strategies for preparing polynorbornene‐<jats:italic>g</jats:italic>‐poly(ethylene oxide)s (PNB‐<jats:italic>g</jats:italic>‐PEO) have been developed through a combination of ring‐opening metathesis polymerization (ROMP) and nitroxide radical coupling (NRC). 2‐Bromoisobutyrate‐functionalized poly(ethylene oxide) monomethyl ether 2000 (PEO<jats:sub>45</jats:sub>‐Br) was successfully anchored on a 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO)‐containing polynorbornene backbone of number‐average degree of polymerization () of 100 through the grafting‐onto strategy, resulting in PNB‐<jats:italic>g</jats:italic>‐PEO with a grafting yield ranging up to 90%. ROMP of ω‐<jats:italic>exo</jats:italic>‐norbornenyl PEO<jats:sub>45</jats:sub> monomethyl ether macromonomer issued from NRC between a nitroxide‐functionalized norbornene and PEO<jats:sub>45</jats:sub>‐Br has allowed to reach a well‐defined bottlebrush copolymer with a backboneof 100 while retaining a low dispersity of 1.09. The effect of the grafting‐onto versus grafting‐through strategy and, consequently, of the grafting density, was investigated by thermal analyses and self‐assembly properties of the PNB<jats:sub>100</jats:sub>‐<jats:italic>g</jats:italic>‐PEO<jats:sub>45</jats:sub>. A substantial reduction of crystallinity was observed for PNB‐<jats:italic>g</jats:italic>‐PEO prepared via the grafting‐through route. Preliminary study of the self‐assembling properties has shown that the graft copolymers form monodisperse spherical particles in aqueous solution. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. <jats:bold>2020</jats:bold>, <jats:italic>58</jats:italic>, 645–653</jats:p>

Topics
  • density
  • copolymer
  • crystallinity
  • bottlebrush