Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zuccalà, Elena

  • Google
  • 1
  • 10
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Post‐deposition annealing and interfacial atomic layer deposition buffer layers of Sb<sub>2</sub>Se<sub>3</sub>/CdS stacks for reduced interface recombination and increased open‐circuit voltages13citations

Places of action

Chart of shared publication
Melchiorre, Michele
1 / 6 shared
Weiss, Thomas Paul
1 / 5 shared
Adib, Brahime El
1 / 2 shared
Minguezbacho, Ignacio
1 / 1 shared
Dale, Phillip
1 / 8 shared
Yokosawa, Tadahiro
1 / 18 shared
Bachmann, Julien
1 / 24 shared
Spiecker, Erdmann
1 / 70 shared
Siebentritt, Susanne
1 / 18 shared
Valle, Nathalie
1 / 15 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Melchiorre, Michele
  • Weiss, Thomas Paul
  • Adib, Brahime El
  • Minguezbacho, Ignacio
  • Dale, Phillip
  • Yokosawa, Tadahiro
  • Bachmann, Julien
  • Spiecker, Erdmann
  • Siebentritt, Susanne
  • Valle, Nathalie
OrganizationsLocationPeople

article

Post‐deposition annealing and interfacial atomic layer deposition buffer layers of Sb<sub>2</sub>Se<sub>3</sub>/CdS stacks for reduced interface recombination and increased open‐circuit voltages

  • Melchiorre, Michele
  • Weiss, Thomas Paul
  • Adib, Brahime El
  • Zuccalà, Elena
  • Minguezbacho, Ignacio
  • Dale, Phillip
  • Yokosawa, Tadahiro
  • Bachmann, Julien
  • Spiecker, Erdmann
  • Siebentritt, Susanne
  • Valle, Nathalie
Abstract

<jats:title>Abstract</jats:title><jats:p>Currently, Sb<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> thin films receive considerable research interest as a solar cell absorber material. When completed into a device stack, the major bottleneck for further device improvement is the open‐circuit voltage, which is the focus of the work presented here. Polycrystalline thin‐film Sb<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> absorbers and solar cells are prepared in substrate configuration and the dominant recombination path is studied using photoluminescence spectroscopy and temperature‐dependent current–voltage characteristics. It is found that a post‐deposition annealing after the CdS buffer layer deposition can effectively remove interface recombination since the activation energy of the dominant recombination path becomes equal to the bandgap of the Sb<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> absorber. The increased activation energy is accompanied by an increased photoluminescence yield, that is, reduced non‐radiative recombination. Finished Sb<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> solar cell devices reach open‐circuit voltages as high as 485 mV. Contrarily, the short‐circuit current density of these devices is limiting the efficiency after the post‐deposition annealing. It is shown that atomic layer‐deposited intermediate buffer layers such as TiO<jats:sub>2</jats:sub> or Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> can pave the way for overcoming this limitation.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • photoluminescence
  • thin film
  • annealing
  • activation
  • current density
  • interfacial
  • atomic layer deposition