People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ho-Baillie, Anita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Surface saturation current densities of perovskite thin films from Suns‐photoluminescence quantum yield measurementscitations
- 2023Decoupling Bimolecular Recombination Mechanisms in Perovskite Thin Films Using Photoluminescence Quantum Yield
- 2023Surface Saturation Current Densities of Perovskite Thin Films from Suns-Photoluminescence Quantum Yield Measurements
- 2021Silicate glass-to-glass hermetic bonding for encapsulation of next-generation optoelectronicscitations
- 2021Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenchingcitations
- 2021Integrating low-cost earth-abundant co-catalysts with encapsulated perovskite solar cells for efficient and stable overall solar water splittingcitations
- 2020Transparent electrodes consisting of a surface-treated buffer layer based on tungsten oxide for semitransparent perovskite solar cells and four-terminal tandem applicationscitations
- 2020Unveiling the relationship between the perovskite precursor solution and the resulting device performancecitations
- 2018Scaling limits to large area perovskite solar cell efficiencycitations
- 2017Impact of microstructure on the electron-hole interaction in lead halide perovskitescitations
- 2017A life cycle assessment of perovskite/silicon tandem solar cellscitations
- 2017A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modulescitations
- 2017Spatial distribution of lead iodide and local passivation on organo-lead halide perovskitecitations
- 2016Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometrycitations
- 2015Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskitescitations
- 2015Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devicescitations
Places of action
Organizations | Location | People |
---|
document
Scaling limits to large area perovskite solar cell efficiency
Abstract
<p>Perovskite solar cells have demonstrated efficiencies over 20%, but this has not been reproduced at large areas. We explore the theoretical limit to single large area perovskite solar cell efficiency, with different front conductive layers: first, the standard n-i-p structure with a transparent conductive electrode (TCE) at the substrate, and then structures that include a front metal grid. We model and optimize the impact of the thickness of the TCE and the dimensions of the grid elements to balance series resistance, parasitic absorption in the TCE layer, and shading losses to maximize efficiency. The results of the optimization suggest that the efficiency of the standard design can be significantly improved simply by selecting the optimum TCE thicknesses for the cell size. However, the poor scaling of the standard design prevents the fabrication of efficient large area cells. Adding a metal grid allows the efficiency of large area cells (156 mm × 156 mm) to approach that of small cells and exceed 20%. The maximum efficiency is limited by the minimum width of the metal grid elements and the sheet resistance of the metal grid material. In this context, the performances of fluorine-doped tin oxide and indium tin oxide as TCE materials were compared, with indium tin oxide found to be superior. We also explore the limits of performance when connecting multiple cells in series to form a large area minimodule and determine the conditions when a front grid is beneficial. Design rules are presented that allow researchers to calculate the optimum cell parameters for high efficiency.</p>