Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Raappana, Marianna

  • Google
  • 3
  • 14
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Influence of ex-situ annealing on the properties of MgF2 thin films deposited by electron beam evaporation10citations
  • 2016High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique32citations
  • 2016Combined MBE-MOCVD process for high-efficiency multijunction solar cellscitations

Places of action

Chart of shared publication
Polojärvi, Ville
3 / 6 shared
Isoaho, Riku
3 / 9 shared
Aho, Timo
3 / 4 shared
Valden, Mika
1 / 37 shared
Aho, Arto
3 / 8 shared
Lahtonen, Kimmo
1 / 38 shared
Guina, Mircea
3 / 36 shared
Reuna, Jarno
1 / 2 shared
Pääkkönen, Pertti
1 / 2 shared
Campesato, Roberta
2 / 2 shared
Gori, Gabriele
2 / 2 shared
Casale, Mariacristina
2 / 2 shared
Tukiainen, Antti
2 / 23 shared
Greco, Erminio
2 / 2 shared
Chart of publication period
2019
2016

Co-Authors (by relevance)

  • Polojärvi, Ville
  • Isoaho, Riku
  • Aho, Timo
  • Valden, Mika
  • Aho, Arto
  • Lahtonen, Kimmo
  • Guina, Mircea
  • Reuna, Jarno
  • Pääkkönen, Pertti
  • Campesato, Roberta
  • Gori, Gabriele
  • Casale, Mariacristina
  • Tukiainen, Antti
  • Greco, Erminio
OrganizationsLocationPeople

article

High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique

  • Polojärvi, Ville
  • Isoaho, Riku
  • Campesato, Roberta
  • Aho, Timo
  • Gori, Gabriele
  • Aho, Arto
  • Casale, Mariacristina
  • Guina, Mircea
  • Tukiainen, Antti
  • Greco, Erminio
  • Raappana, Marianna
Abstract

Triple-junction GaInP/GaAs/GaInNAs solar cells with conversion efficiency of ~29% at AM0 are demonstrated using a combination of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) processes. The bottom junction made of GaInNAs was first grown on a GaAs substrate by MBE and then transferred to an MOCVD system for subsequent overgrowth of the two top junctions. The process produced repeatable cell characteristics and uniform efficiency pattern over 4-inch wafers. Combining the advantages offered by MBE and MOCVD opens a new perspective for fabrication of high-efficiency tandem solar cells with three or more junctions.

Topics
  • chemical vapor deposition