People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thurner, Philipp J.
TU Wien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Maleimide-styrene-butadiene terpolymerscitations
- 2018Collective cell behavior in mechanosensing of substrate thicknesscitations
- 2016Development of X-ray micro-focus computed tomography to image and quantify biofilms in central venous catheter models in vitrocitations
- 2014Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentationcitations
- 2013A novel videography method for generating crack-extension resistance curves in small bone samplescitations
Places of action
Organizations | Location | People |
---|
article
Maleimide-styrene-butadiene terpolymers
Abstract
<p>The terpolymer acrylonitrile-butadiene-styrene (ABS) is a widely used thermoplastic material due to its excellent mechanical properties, especially high toughness. However, the monomer system of ABS cannot be feasibly photopolymerized due to its reactivity, opacity and monomer volatility. We show the transfer of an ABS microstructure to photopolymers via monomer systems designed to mimic ABS while remaining photopolymerizable. Acrylonitrile was substituted by more reactive and less volatile maleimides, of which the N substituent influences crosslinking considerably. Instead of styrene, less volatile derivatives were utilized as comonomers. Poly(butadiene) was introduced as cheap, readily available and non-volatile rubber. The resulting maleimide-styrene-poly(butadiene) networks exhibit varying microphase separations and simultaneous transparency. While optimized materials cannot quite exhibit the yield strain of hot-pressed ABS filament, their toughness partly exceeds that of ABS. Superior thermal stabilities and glass transition temperatures up to 190 °C were observed. Finally, stereolithographic printing of one tuned monomer system was conducted.</p>