People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tighe, Brian J.
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Low cytotoxicity, antibacterial property, and curcumin delivery performance of toughness-enhanced electrospun composite membranes based on poly(lactic acid) and MAX phase (Ti3AlC2)citations
- 2023In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modellingcitations
- 2021The influence of structure and morphology on ion permeation in commercial silicone hydrogel contact lensescitations
- 2020Physical and thermal properties of l-lactide/ϵ-caprolactone copolymerscitations
- 2020Physical and thermal properties of l-lactide/ϵ-caprolactone copolymers:the role of microstructural design
- 2019Investigating the permeation properties of contact lenses and its influence on tear electrolyte compositioncitations
- 2018Biodegradable compatibilized poly(L-lactide)/thermoplastic polyurethane blends:design, preparation and property testing
- 2018Biodegradable compatibilized poly(L-lactide)/thermoplastic polyurethane blendscitations
- 2018Hydrophobic and Hydrophilic Effects on Water Structuring and Adhesion in Denture Adhesivescitations
- 2017Tuneable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environmentscitations
- 2016Bioplasticscitations
- 2016Structural design of contact lens-based drug delivery systems; in vitro and in vivo studies of ocular triggering mechanismscitations
- 2015Polymer-lipid interactionscitations
- 2014Controlled synthesis and processing of a poly(L-lactide-co-ε-caprolactone) copolymer for biomedical use as an absorbable monofilament surgical suturecitations
- 2014Identification of optically clear regions of ternary polymer blends using a novel rapid screening methodcitations
- 2012Charge-balanced copolymer hydrogels
- 2012Proteoglycan analogues for ophthalmic and orthopaedic applicationscitations
- 2011Adhesives and interfacial phenomena in wound healingcitations
- 2011Dehydration at the lens surface
- 2009Towards a synthetic osteo-odonto-keratoprosthesiscitations
- 2001Centrifugally-spun polyhydroxybutyrate fibres: Effect of process solvent on structure, morphology and cell responsecitations
Places of action
Organizations | Location | People |
---|
article
Physical and thermal properties of l-lactide/ϵ-caprolactone copolymers
Abstract
<p>Understanding the underlying role of microstructural design in polymers allows for the manipulation and control of properties for a wide range of specific applications. As such, this work focuses on the study of microstructure–property relationships in l-lactide/ϵ-caprolactone (LL/CL) copolymers. One-step and two-step bulk ring-opening polymerization (ROP) procedures were employed to synthesize LL/CL copolymers of various compositions and chain microstructures. In the one-step procedure, LL and CL were simultaneously copolymerized to yield P(LL-stat-CL) statistical copolymers. In the two-step procedure, poly(l-lactide) (PLL) and poly(ϵ-caprolactone) (PCL) prepolymers were synthesized in the first step before CL and LL respectively were added in the second step to yield P[LL-b-(CL-stat-LL)-b-LL] and P[CL-b-(LL-stat-CL)-b-CL] block copolymers as the final products. The findings reveal that, in addition to the copolymerization procedure employed, the length and type of the prepolymer play important roles in determining the chain microstructure and thereby the overall properties of the final copolymer. Moreover, control over the degree of crystallinity and the type of crystalline domains, which is controlled during the polymer chemistry process, heavily influences the physical and mechanical properties of the final polymer. In summary, this work describes an interesting approach to the microstructural design of biodegradable copolymers of LL and CL for potential use in biomedical applications.</p>