People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farmer, Thomas James
University of York
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Effects of Methyl Branching on the Properties and Performance of Furandioate-Adipate Copolyesters of Bio-Based Secondary Diolscitations
- 2019Fabrication of PES/PVP Water Filtration Membranes Using Cyrene®, a Safer Bio-Based Polar Aprotic Solventcitations
- 2019Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Aluminacitations
- 2018A methodical selection process for the development of ketones and esters as bio-based replacements for traditional hydrocarbon solventscitations
- 2018Post-polymerization modification of bio-based polymerscitations
- 2018Elucidating enzymatic polymerisationscitations
- 2017Wholly biomass derivable sustainable polymers by ring-opening metathesis polymerisation of monomers obtained from furfuryl alcohol and itaconic anhydridecitations
- 20172,2,5,5-Tetramethyltetrahydrofuran (TMTHF)citations
- 2017New bio-based monomers::Tuneable polyester properties using branched diols from biomasscitations
- 2017New bio-based monomers:citations
- 2016Ring opening metathesis polymerisation of a new bio-derived monomer from itaconic anhydride and furfuryl alcoholcitations
- 2015Bio-derived materials as a green route for precious & critical metal recovery and re-usecitations
Places of action
Organizations | Location | People |
---|
article
Post-polymerization modification of bio-based polymers
Abstract
<p>The renaissance of the bio-based chemical industry over the last 20years has seen an ever growing interest in the synthesis of new bio-based polymers. The building blocks of these new polymers, so called platform molecules, contain significantly more chemical functionality than their petrochemical counterparts (such as ethene, propene and para-xylene). As a result bio-based polymers often contain greater residual chemical functionality in their chains, with groups such as alkenes and hydroxyls commonly observed. These functional groups can act as sites for post-polymerization modification (PPM), thus further extending the range of applications for bio-based polymers by tailoring the polymers' final properties. This mini-review highlights some of the most recent and compelling examples of how to make use of bio-based polymers with residual functional groups for PPM. It also looks at how the emerging interdisciplinary field of enzymatic polymer synthesis allows for increased functionality in polymers by avoiding side-reactions as a result of milder reaction conditions, and additionally offers an alternative means of polymer surface modification.</p>