People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Šafaříková, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2016Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3‐hydroxybutyrate) and micro‐fibrillated bacterial cellulosecitations
- 2016Magnetically modified biochar for organic xenobiotics removalcitations
- 2016Decrease of Pseudomonas aeruginosa biofilm formation by food waste materialscitations
- 2015Spent Rooibos (Aspalathus linearis) Tea Biomass as an Adsorbent for Organic Dye Removalcitations
- 2015Magnetically responsive yeast cells: methods of preparation and applicationscitations
- 2015Magnetically modified TiO2 powders – microstructure and magnetic propertiescitations
- 2014Magnetically Responsive (Nano) Biocompositescitations
- 2012Potential of magnetically responsive (nano)biocompositescitations
- 2011Magnetically responsive biocomposites for inorganic and organic xenobiotics removalcitations
- 2010Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal
Places of action
Organizations | Location | People |
---|
article
Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3‐hydroxybutyrate) and micro‐fibrillated bacterial cellulose
Abstract
Cartilage tissue engineering is an emerging therapeutic strategy that aims to regenerate damaged cartilage caused by disease, trauma, ageing or developmental disorder. Since cartilage lacks regenerative capabilities, it is essential to develop approaches that deliver the appropriate cells, biomaterials and signalling factors to the defect site. Materials and fabrication technologies are therefore critically important for cartilage tissue engineering in designing temporary, artificial extracellular matrices (scaffolds), which support 3D cartilage formation. Hence, this work aimed to investigate the use of poly(3-hydroxybutyrate)/microfibrillated bacterial cellulose (P(3HB)/MFC) composites as 3D-scaffolds for potential application in cartilage tissue engineering. The compression moulding/particulate leaching technique employed in the study resulted in good dispersion and a strong adhesion between the MFC and the P(3HB) matrix. Furthermore, the composite scaffold produced displayed better mechanical properties than the neat P(3HB) scaffold. On addition of 10, 20, 30 and 40 wt% MFC to the P(3HB) matrix, the compressive modulus was found to have increased by 35%, 37%, 64% and 124%, while the compression yield strength increased by 95%, 97%, 98% and 102% respectively with respect to neat P(3HB). Both cell attachment and proliferation were found to be optimal on the polymer-based 3D composite scaffolds produced, indicating a non-toxic and highly compatible surface for the adhesion and proliferation of mouse chondrogenic ATDC5 cells. The large pores sizes (60-83 mu m) in the 3D scaffold allowed infiltration and migration of ATDC5 cells deep into the porous network of the scaffold material. Overall this work confirmed the potential of P(3HB)/MFC composites as novel materials in cartilage tissue engineering.