Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lozano-Cruz, Tania

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Synthesis of new amphiphilic water‐stable hyperbranched polycarbosilane polymers10citations

Places of action

Chart of shared publication
Mata, F. Javier De La
1 / 10 shared
Ortega, Paula
1 / 8 shared
Moreno, Silvia
1 / 3 shared
Tarazona, M. Pilar
1 / 1 shared
Gómez, Rafael
1 / 4 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Mata, F. Javier De La
  • Ortega, Paula
  • Moreno, Silvia
  • Tarazona, M. Pilar
  • Gómez, Rafael
OrganizationsLocationPeople

article

Synthesis of new amphiphilic water‐stable hyperbranched polycarbosilane polymers

  • Mata, F. Javier De La
  • Ortega, Paula
  • Moreno, Silvia
  • Lozano-Cruz, Tania
  • Tarazona, M. Pilar
  • Gómez, Rafael
Abstract

<jats:title>Abstract</jats:title><jats:p><jats:bold>New amphiphilic hyperbranched polymers possessing hydrophobic skeletons and hydrophilic terminal groups have been prepared and characterized. The synthetic strategy involved the formation of a new stable matrix with aromatic units within a carbosilane backbone, as well as the use of a classical polycarbosilane matrix. Both of them with allyl groups on the surface have narrow polydispersity values. Molecular weight and polydispersity of the hyperbranched polymers were obtained using gel permeation chromatography with multi‐angle light scattering, and determination of the average number of functional groups present on the surface was achieved using <jats:styled-content style="fixed-case"><jats:sup>1</jats:sup>H NMR</jats:styled-content> spectroscopy. The introduction of ionic groups was carried out via thiol–ene reactions with various thiol derivatives. The thermal properties of the polymers were also analysed using differential scanning calorimetry and zeta potential measurements. © 2013 Society of Chemical Industry</jats:bold></jats:p>

Topics
  • surface
  • polymer
  • differential scanning calorimetry
  • molecular weight
  • Nuclear Magnetic Resonance spectroscopy
  • polydispersity
  • light scattering
  • gel filtration chromatography