People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tighe, Brian J.
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Low cytotoxicity, antibacterial property, and curcumin delivery performance of toughness-enhanced electrospun composite membranes based on poly(lactic acid) and MAX phase (Ti3AlC2)citations
- 2023In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modellingcitations
- 2021The influence of structure and morphology on ion permeation in commercial silicone hydrogel contact lensescitations
- 2020Physical and thermal properties of l-lactide/ϵ-caprolactone copolymerscitations
- 2020Physical and thermal properties of l-lactide/ϵ-caprolactone copolymers:the role of microstructural design
- 2019Investigating the permeation properties of contact lenses and its influence on tear electrolyte compositioncitations
- 2018Biodegradable compatibilized poly(L-lactide)/thermoplastic polyurethane blends:design, preparation and property testing
- 2018Biodegradable compatibilized poly(L-lactide)/thermoplastic polyurethane blendscitations
- 2018Hydrophobic and Hydrophilic Effects on Water Structuring and Adhesion in Denture Adhesivescitations
- 2017Tuneable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environmentscitations
- 2016Bioplasticscitations
- 2016Structural design of contact lens-based drug delivery systems; in vitro and in vivo studies of ocular triggering mechanismscitations
- 2015Polymer-lipid interactionscitations
- 2014Controlled synthesis and processing of a poly(L-lactide-co-ε-caprolactone) copolymer for biomedical use as an absorbable monofilament surgical suturecitations
- 2014Identification of optically clear regions of ternary polymer blends using a novel rapid screening methodcitations
- 2012Charge-balanced copolymer hydrogels
- 2012Proteoglycan analogues for ophthalmic and orthopaedic applicationscitations
- 2011Adhesives and interfacial phenomena in wound healingcitations
- 2011Dehydration at the lens surface
- 2009Towards a synthetic osteo-odonto-keratoprosthesiscitations
- 2001Centrifugally-spun polyhydroxybutyrate fibres: Effect of process solvent on structure, morphology and cell responsecitations
Places of action
Organizations | Location | People |
---|
article
Identification of optically clear regions of ternary polymer blends using a novel rapid screening method
Abstract
<p>The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent-mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96-well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X-ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l-lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions.</p>