Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Costa, Luís C.

  • Google
  • 1
  • 3
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013New method to analyze dielectric relaxation processes15citations

Places of action

Chart of shared publication
Teixeira, Silvia Soreto
1 / 3 shared
Dias, Carlos
1 / 16 shared
Andrade, Maria Madalena Dionísio
1 / 31 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Teixeira, Silvia Soreto
  • Dias, Carlos
  • Andrade, Maria Madalena Dionísio
OrganizationsLocationPeople

article

New method to analyze dielectric relaxation processes

  • Teixeira, Silvia Soreto
  • Dias, Carlos
  • Andrade, Maria Madalena Dionísio
  • Costa, Luís C.
Abstract

<p>The relaxation properties of polymethacrylates of the n-alkyl series with n=l, 2 and 4 (poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(n-butyl methacrylate) (PnBMA)) have been measured and analyzed in order to relate their properties to the size of the lateral side chains. The n-alkyl series has been regarded as a model system and was used in this work to test a graphical data analysis method. Essentially, four relaxation processes were detected in the three polymers: the γ, β, α and αβ relaxations, in increasing order of temperature. It was found that the γ relaxation has a low activation energy, of around 36.3-38.5kJmol<sup>-1</sup>, independent of the side chain, exhibiting low entropy of activation values when referring to the Eyring description of the activation parameters. The β relaxation was found to be similar in PMMA and PEMA, showing an activation energy of 88.8kJmol<sup>-1</sup>, increasing to 112.8kJmol<sup>-1</sup> in PnBMA. The activation entropy was also found to be low for this relaxation, although greater than that for the γ relaxation. In contrast, the α relaxation is quite different in these polymers. We observed a gradual shift in the glass transition temperature towards lower temperatures as the side chain increases in length. The manner in which the α transition makes its way into the dielectric spectra is more abrupt in PMMA than in PnBMA, denoting a higher fragility in the former polymer. Finally, there is a significant difference in the coalescence scenarios of the α and β relaxations for temperatures higher than the glass transition temperature, where they give rise to the so-called αβ relaxation. © 2013 Society of Chemical Industry.</p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • glass transition temperature
  • activation