Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alejji, Maryam

  • Google
  • 2
  • 10
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of layered transition metal dichalcogenide hybrid nanomaterials on the piezoelectric performance of non‐solvent induced phase separated polyvinylidene fluoride1citations
  • 2022Continuous Nanoparticle Patterning Strategy in Layer‐Structured Nanocomposite Fibers14citations

Places of action

Chart of shared publication
Kacem, Eya
1 / 2 shared
Xu, Weiheng
1 / 2 shared
Chawla, Nikhilesh
1 / 3 shared
Ejaz, Faizan
1 / 1 shared
Kakarla, Mounika Chowdary
1 / 1 shared
Zhu, Yuxiang
1 / 3 shared
Jambhulkar, Sayli
1 / 3 shared
Bawareth, Mohammed
1 / 1 shared
Hassan, Mohammad K.
1 / 4 shared
Asadi, Amir
1 / 3 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Kacem, Eya
  • Xu, Weiheng
  • Chawla, Nikhilesh
  • Ejaz, Faizan
  • Kakarla, Mounika Chowdary
  • Zhu, Yuxiang
  • Jambhulkar, Sayli
  • Bawareth, Mohammed
  • Hassan, Mohammad K.
  • Asadi, Amir
OrganizationsLocationPeople

article

Effect of layered transition metal dichalcogenide hybrid nanomaterials on the piezoelectric performance of non‐solvent induced phase separated polyvinylidene fluoride

  • Alejji, Maryam
  • Kacem, Eya
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>Layered transition metal dichalcogenides (TMDs) with high aspect ratios enhance the alignment of polymer chains and induce a preferred orientation of the polymeric crystallites when incorporated into polyvinylidene fluoride (PVDF). In addition to offering an effective charge‐transfer mechanism, TMDs give PVDF more rigidity and piezoelectric qualities. This work reports the non‐solvent induced phase separation (NIPS) introduced while developing the PVDF/MoS<jats:sub>2</jats:sub> composites. During the NIPS, the PVDF chains become phase‐separated, which induces high polarization in the PVDF matrix. Phase‐separated PVDF/MoS<jats:sub>2</jats:sub> composites show high porosity and charge distribution attributed to the enhanced piezoelectric output voltage. While the neat PVDF demonstrated very feeble output voltage generation, the hybrid composite containing 2 wt.% of MoS<jats:sub>2</jats:sub>/ZnO facilitated almost 20 times higher performance (peak‐to‐peak voltage of 2.4 V). This work yielded a phase‐separated composite that finds uses in energy harvesting, sensors, and actuators, among other fields.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>NIPS creates high‐porosity composites with improved charge distribution.</jats:p></jats:list-item> <jats:list-item><jats:p>Layered TMDs improve charge‐transfer mechanism and PVDF's electrical properties.</jats:p></jats:list-item> <jats:list-item><jats:p>2 wt.% MoS<jats:sub>2</jats:sub>/ZnO exhibits nearly 20 times higher voltage generation than neat PVDF.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • polymer
  • phase
  • layered
  • composite
  • porosity
  • size-exclusion chromatography